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Abstract. This paper describes methods and approaches that have been used to simulate and

model the transport, mixing and agglomeration of small particles in a flowing turbulent gas.

The transported particles because of their inertia are assumed not to follow the motion of the

large scales of the turbulence and or the motion of the small dissipating scales of the turbulence.

We show how both these behaviours can be represented by a PDF approach analogous to

that used in Classical Kinetic Theory. For large scale dispersion the focus is on transport

in simple generic flows like statistically stationary homogeneous and isotropic turbulence and

simple shear flows. Special consideration is given to the transport and deposition of particles

in turbulent boundary layers. For small scale transport the focus is on how the the small

scales of turbulence together with the particle inertial response enhances collision processes like

particle agglomeration. In this case the importance of segregation and the formation of caustics,

singularities and random uncorrelated motion is highlighted and discussed.

Keywords: inertial particles, turbulence, pdf approach, segregation, dispersion

1. Introduction
This paper is about ways of simulating and modelling the transport of small particles in a
turbulent flow. More particularly it’s about modelling and simulating the way the turbulence
mixes and disperses these particles, the way it deposits and resuspends them from surfaces
exposed to the flow and how it brings them closer together and enhances their collision processes
as in particle agglomeration. Of particular concern will be the way these small particles respond
to both the large and small scales of turbulence and how in turn this inertial response influences
these various transport processes. This response is characterized by the particle Stokes number
St which measures the particle response time to the typical time scale of the motion of the large
or the small scales of the turbulence. We focus our attention on the motion of solid particles in
a turbulent gas because the forces on the particles are simply expressed in terms of quasi-steady
lift or drag dependent on the relative velocity between particle and local carrier flow. In the
simple cases we wish to consider, the forces acting on the particles will simply be that derived
from Stokes drag. Such particle suspensions are referred to here and elsewhere [45] as turbulent
aerosols so that the mass loading of the aerosol particles is sufficiently low to ignore any way
two-way coupling between the continuous gas1 and particle dispersed phases.

1 We will refer to this as the carrier flow or sometimes as simply the fluid
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Turbulent aerosols are a feature of many industrial and environmental processes: from cloud
droplets, mists and fogs to mixing and combustion processes in coal fire burners, and the release
and dispersal of radioactive particles in a nuclear severe accident. They influence the weather
and are key factors in controlling climate; they impact upon our health and longevity. So
understanding how they behave, how they can be controlled is an important area of study.
In all these processes the turbulence, both the large and small scales play a crucial role in
determining their behaviour. How for instance the aerosol droplets or particles are formed by
nucleation, grow or evaporate, how they mix and chemically react, and the way particles interact
with surfaces exposed to the flow. Such processes are controlled by either the large scales or the
small scales and in some cases by both scales acting together. An area of much investigation
is the mechanism for warm-rain initiation and in particular the way droplet interaction with
the small scales of turbulence in clouds leads to a droplet size distribution, much broader than
one would expect from a closed adiabatic parcel model of droplet formation and growth. It is
the small scales of the turbulence for instance that are responsible for the segregation or un-
mixing of a turbulent aerosol where not only the scale is important but also the structure of the
turbulence and the mixture of straining and vorticity within those scales.

In this short review of particles in turbulence we consider first those processes that are
controlled by the large scales of the turbulence (typical of the size of the flow containment).
The large scale motion influences and controls what is commonly referred to as one-particle
dispersion and in this process the influence of the local mean shear for which the influence of the
local mean shear is inextricably linked to the turbulence. It is what we mean by the transport
of particles in complex flows where particles are transported both by the mean shear and the
turbulence produced by the shear, both being spatially non uniform. However a consideration
of the transport of particles in simple generic flows like statistically stationary homogeneous and
isotropic turbulence and simple shear flows provide important insights into the way particles
are transported in turbulent shear flows in general. A crucial consideration is the transport
of particles in a turbulent boundary layer since the turbulence has an important rate limiting
influence in transporting particles to a surface and special consideration will be given to this in
this review.

The influence of the small scales of turbulence is referred to as two-particle dispersion since
they influence the relative motion between two particles. It is at the small scales where the
phenomenon of demixing of particle suspensions occur. This process has been the subject of
intensive research over the last ten years. Partly because the small scales have a more universal
structure far removed from the influence and complexity of local shear and partly because
they are more amenable to analysis and to the construction of simple models. Simulation and
analysis have revealed some important important features such as the formation of caustics and
the occurrence of singularities in the particle concentration field and the presence of random
uncorrelated motion (RUM).

An important driving force in all these studies has been the need to provide a basic framework
to handle the statistical nature of these processes and to use this to provide a two-fluid model
of a particle-fluid mixture which treats the particle phase as a continuum and to develop a set
of mass, momentum and energy equations for the dispersed phase analogous to those of the
carrier phase. This is an essential element of turbulence modelling and an importnt element of
the development and application of CFD. Over the last 20 years this has been the goal of the
PDF approach, an approach analogous to statistical mechanics in that the quest is for a Master
Equation analogous to the Maxwell-Boltzmann equation representing in this case the transport
of particles in phase space - more particularly an equation that is appropriate for both one
particle and two-particle transport. We begin our review of this subject by recalling the basic
features of this approach, primarily because it is an approach that can in principle embody and
provide models for the various processes as well in its own right provide insights into some of
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the long term nature of these process that in some cases are difficult to resolve in simulation
and in experiment.

2. PDF development
The probability density function (PDF) approach is a rational approach to modelling dispersed
particle flows in the same way that classcal kinetic theory is a rational approach for modelling
gas flows. That is, there exists in both cases an underlying equation (a Master Equation) which,
in a strictly formal way, can be used to derive both the continuum equations and constitutive
relations of a gas or a dispersed phase of particles. In kinetic theory, the master equation is the
well-known Maxwell–Boltzmann equation, whilst in the modelling of dispersed particle flows, it
is known as the kinetic equation. There are currently two forms of the kinetic equation. In the
first form, the pdf, as in Kinetic Theory, refers to the probability density that a particle has a
certain velocity and position at a given time. This approach is referred to as the kinetic model
(KM) approach. It was originally developed by Buyevich [4, 5, 6] and further developed since by
a number of workers, most notably Reeks [34, 27, 28, 29], Hyland [20, 21], Swailes [41] Derevich
[11], Zaichik [46] and Pozorski & Minier (1998) [26].

In contrast the second form of the PDF equation, first proposed by Simonin, Deutsch and
Minier [36], refers to a more general PDF which includes the velocity of the carrier flow local
to the particle as a phase space variable as well as the particle position and velocity. It is a
development of the PDF approach used by Pope [17] based on a generalised Langevin model
(GLM) for the equation of motion of the carrier flow encountered by a particle. It is referred to
here as the GLM approach.

2.1. PDF equation for inert particles

To illustrate the differences and similarities between the KM and GLM approaches, let us
consider the simplest case of the transport of inert non-reacting solid particles in a turbulent
gas flow. To simplify the situation still further the drag acting on the particle is linearized with
respect to the relative velocity , i.e.

FA
∼= η · (u− v) (1)

where v is the velocity of an individual particle at position x at time t where the local flow
velocity is u(x, t) and η is the tensor of net friction coefficients and given by

η =
1

2
ρgACD(Rep)|u− v| (2)

where v(x, t) is the net particle mean velocity and Rep is the value of the particle Reynolds
number based on the net relative velocity between particle and local carrier flow. The equations
of motion for the particle are

dx

dt
= v (3)

dv

dt
= β · (u− v) (4)

where β is the inverse particle response tensor and given by m−1η for a particle of mass m. In the

case of Stokes drag, the elements of β are constants of the motion and β−1ij are the corresponding
particle response times to changes in flow. In addition to the particle equations of motion, the
equation of motion of the carrier flow velocity u along a particle trajectory is included, namely

dui
dt

= Fi (v,u,x, t) (5)
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In the KM approach, one considers the continuum equations derived from an equation for the
phase space probability density 〈W 〉 (v,x, t) in which u (x, t) is a random function of x, t and v
and x are independent random variables. In the GLM approach, the continuum equations are
derived from a conservation equation for the phase space density 〈P 〉(v,u,x, t) where v,u,x form
a set of independent variables. The ensemble average 〈..〉means an ensemble of the instantaneous
phase space densities W and P over all realizations of the flow velocity field. It is convenient to
resolve ui(x, t) and Fi(v,u,x, t) into mean and fluctuating parts,

ui = 〈ui〉+ u′i Fi = 〈Fi〉+ F ′i (6)

so that the mean component is responsible for convection in phase space and the fluctuating
part (due to the turbulence) is responsible for dispersion. Then the transport equations for
mean values of W and P , namely 〈W 〉 and 〈P 〉, are

∂

∂t
+

∂

∂xi
vi +

∂

∂vi
βij (〈uj〉 − vj) 〈W 〉 = − ∂

∂vi
βij〈u′jW 〉 (7)

∂

∂t
+

∂

∂xi
vi +

∂

∂vi
βij (uj − vj) +

∂

∂ui
〈Fi〉〈P 〉 = − ∂

∂ui
〈F ′iP 〉 (8)

To solve these equations closure relations for 〈u′iW 〉 and 〈F ′iP 〉 are required. We now consider
the various forms that have been derived for these terms assuming that βij = βδij .

2.1.1. Closure approximation for a non-reactive gas-particle flows Kinetic model

Based on the either the LHDI approximation (Reeks [29]) or the Furutsu Novikov formula
(Swailes & Darbyshire [41] ), the closure approximation for the net flux 〈u′′iW 〉 for particles with
velocity v and position x at time t, is given by

〈u′iW 〉 = −
(
∂

∂vj
µji +

∂

∂xj
λji

)
〈W 〉+ κi〈W 〉 (9)

where explicitly µij(v,x, t) and λij(v,x, t) phase space diffusion coefficients that refer to diffusion
in velocity and configuration space respectively and κi represents the components of a convective
(body) force that depends on inhomogeneities in flow filed(i.e it is zero for homogeneous
turbulence). Both µij , λij and κi depends on the flow velocity correlation measured along
particle trajectories that arrive at v,x at time t (See [29, 41]. Their values depend upon the
local mean shearing of the flow.

Generalized Langevin Model GLM

Simonin, Deutsch and Minier (SDM) [36] derive an equation of motion for the fluid velocity
along a particle trajectory by starting from the Langevin equation which Pope [17] has used
as the analogue of the Navier Stokes equation for fluid point motion. Thus along a fluid point
trajectory

dui
dt

= αij (x) (〈uj〉 − uj) + fi (x) + f ′i(t) (10)

where fi(x) is the net viscous and pressure force per unit mass of fluid and f ′i(t) is a white
noise function of time. Both SDM and Pope consider the equation of motion in differential form
because the white noise is assumed non differentiable. For convenience, it is assumed that the
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white noise, like all turbulence related functions is differentiable. The equation of motion has
white noise properties simply because it has a time scale much shorter than the time scale over
which u(t) varies along a fluid point trajectory O(α−1) . For future reference it is noted that

fi (x) =
Df 〈ui〉
Dt

+
∂
〈
u′ju
′
i

〉
∂xj

(11)

where
Df

Dt
=

∂

∂t
+ 〈uj〉

∂

∂xj
(12)

SDM use this relationship to generate an equation of motion for the fluid velocity along a particle

trajectory. So if
dp
dt is the time derivative of the fluid velocity along a particle trajectory and

similarly if
df
dt is along a fluid point trajectory, then

dpui
dt

=

(
∂

∂t
+ vj

∂

∂xj

)
ui (x, t)

= (13)

SDM consider only the contribution from the gradient of the mean fluid velocity in this equation
of motion for the fluid velocity along a particle trajectory. That is, they consider the equation

dpui
dt

= (vj − uj)
∂〈ui (x, t)〉

∂xj
+ αij (〈uj〉 − uj) + fi (x) + f ′i(t) (14)

In effect this is equivalent to assuming that the contribution of the fluctuating fluid velocity
gradient is absorbed into the white noise function f ′i(t). Using the white noise function, the
equation for 〈P 〉 can be closed exactly; namely2〈

F ′i (x, t)P (v,x,u, t)
〉

=
〈
f ′i(t)P (v,u,x, t)

〉
= −

ˆ ∞
0

〈
f ′i(0)f ′j(s)

〉
ds
∂ 〈P 〉
∂uj

(15)

Then from Eq. (14), the equation for 〈P 〉 used by SDM is:

∂ 〈P 〉
∂t

+
∂

∂xi
vi 〈P 〉+

∂

∂vi
βij (uj − vj) 〈P 〉

+
∂

∂ui

[
αij (〈uj〉 − uj) + fi (x) + (vj − uj)

∂ 〈ui〉
∂xj

]
〈P 〉

=

ˆ ∞
0

〈
f ′i(0)f ′j(s)

〉
ds
∂2 〈P 〉
∂uiuj

(16)

3. Dispersion in simple generic flows
The PDF equation can be used to obtain the continuum equations for the dispersed particle
phase treated as a fluid. In the case of the GLM model an extra equation is provided for the
mean carrier flow and covariance of the flow velocity seen by the particles which adds an extra
layer of complication. Both approaches are equivalent to one another when the statistics of the
fluid motion seen by the particle are Gaussian. We refer elsewhere to the explicit form for the
continuum equation [32]. What is interesting is to say something about the form of the equation
in simple generic flows because it gives some insights into the way particle are transported in
more complex non-uniform shear flows. In particular there have been numerous experimental
measurements and simulation on these basic particle-flows and it is useful to compare PDF
predictions with these results.

2 Note the closure is also exact if f ′′(t)is Gaussian non-white but will include gradients of 〈P 〉 in x and v as well.
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3.1. Dispersion in homogeneous isotropic turbulence
Much of the early work on particle dispersion in turbulent flows was directed towards
evaluating or measuring the particle diffusion coefficient in statistical stationary homogeneous
isotropic turbulence or grid generated decaying turbulence which could be considered as quasi-
homogeneous and isotropic. We refer specifically to the seminal experimental measurements of
Wells and Stock [44] who measured the particle dispersion in a turbulence flow field in which
the particles were subjected to a mean drift due to an electric field. The experiment replicated
the features that one would expect if particles were falling under gravity. The beauty of the
experiment was that the settling velocity could be varied for any given particle size and in
fact could be reduced to zero by applying an electric force in the opposite direction to gravity.
In so doing they were able to separate out settling effects from inertial effects on the particle
diffusion coefficient which is something that could not be done with gravitational settling alone
(inertial and settling would always be inextricably linked). The important result from the PDF
approach indicates that the diffusion is bound up with the form of the momentum equation
in the same was as for Brownian motion (one recalls the way Einstein was able to deduce the
Brownian diffusion coefficient using a similar approach [13]). Suppose you consider a system
approaching equilibrium (but not at equilibrium). In that case we might legitimately ignore the
inertial acceleration term in the momentum equation so that we have a particle flux described
as a gradient diffusion equation. Because the underlying flow is homogenous and terms that
involved gradients of of the flow itself can be ignore. The diffusion coefficient is given in the
long term t→∞by the expression

ε = τp(
〈
υ2
〉

+ λ) (17)

where τp = β−1 is the particle response time for Stokes drag and both particle mean square
velocity

〈
υ2
〉

and diffusion coefficient (obtained from the carrier flow velocity measured along a

particle trajectory) are the long term equilibrium values. When the expression for λ and
〈
υ2
〉

are substituted in this equation which both involve 〈u′(0)u′(t)〉 the carrier flow velocity auto
correlation along a particle trajectory, you end up with the following remarkable result, namely

ε =

ˆ ∞
0
〈u′(0)u′(t)〉dt (18)

That is the diffusion coefficient does not depend explicitly upon its inertia, whatever the particle
inertia, the form of the diffusion coefficient is the same. What difference there is depends
on whether the carrier flow timescales along a particle trajectory are bigger or smaller than
those along a fluid element trajectory. In fact particles with more inertia appear to have a
diffusion coefficient that is greater than that for a fluid element or passive tracer. This is
shown in Figure 1based on the results obtained by Squires & Eaton [39] for particle diffusion in
DNS isotropic homogeneous turbulence. The vertical axis is the ratio of the particle diffusion
coefficient compared to that of the fluid or passive scalar. The calculations were done for a
range of particle Stokes numbers St from 0.06 to 0.35 where Stokes number is the ratio of the
particle response time τp to integral timescal of the flow Tf . You can see that for all the Stokes
numbers the long time values of the diffusion coefficient are greater than that of the carrier flow,
the greatest value being for St = .33 but with little difference between this value and the value
for St = 1.09. The formula in Eq,(18) is also appropriate for particles settling under gravity or
in an electric field as with the measurements of Wells and Stock [44]. The timescales of fluid
motion along a particle trajectory depends upon the time it takes for a particle to move from
one eddy to another in the flow field. The faster the particle moves the shorter the timescale of
the fluid motion it encounters, assuming that the eddy lifetime is much longer than the transit
time of the particle. If υg is the settling velocity and le the spatial length scale then le/υg � τe
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Figure 1. Ratio of particle diffusion coeffficient to long term fluid element diffusion coefficient
in homogeneous isotropic turbulence: DNS and experimental measurements, the influence of
inertia τp/Tf and settling υg/u

′. Both plots are from Squires & Eaton[39]

where τe is the eddy decay time. Since τe ∼ le/u′ this implies u′/υg � 1 in which case

ε =

ˆ ∞
0

RE(0, υgt)dt (19)

where RE(t, x) is the carrier flow spatial velocity correlation (in a frame moving with the settling
velocity vg with a separation x measured in the direction of gravity . ε in this case refers to the
diffusion coefficient for diffusion in the direction of gravity.

This behaviour is reflected in Figure 1(b) where the long-time particle diffusion coefficient
in the directiion of gravity is shown as a function of the ratio υg/u

′ again taken from Squires
& Eatons’ DNS calculations [39] and the measurements of Wells and Stock [44]. One further
prediction of the PDF approach borne out by experiments and simulation is that the diffusion
flux jD is given by a Boussinesq approximation in the long term by

jD = 〈ρυ〉 = −ε · ∂ 〈ρ〉
∂x

(20)
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where 〈ρ〉 is average concentration at x the distance measured along any spatial direction, a
result that reflects a Gaussian profile for the mean concentration for an instantaneous point
source of particles.

Dispersion in a simple shear
An important generic flow is particles transported in a simple shear flow. In single phase

flow it is used it to define what we mean by viscosity and the relation between shear stress
and rate of straining of the flow. Using a simple model for the Reynolds shear stresses based
on Pope’s GLM model [17], exact solutions have been obtained for the particle kinetic stresses
(velocity covariances) and the particle diffusion coefficients associated with an instantaneous
point source located at the centre of the shear [32]. The results for the particle kinetic stresses
are shown in Figures 2(a) as a function of the particle response time suitably normalized on the
timescale of the turbulence which is homogenous and stationary (effectively the particle Stokes
number St). x1 is the streamwise direction and x2 cross-streamwise direction. What is plotted is
the difference between the streamwise and cross-streamwise components for the normal stresses
normalized on S2

〈
u′2
〉

where S is the strain rate normalized on the time scale of the turbulence.
Whats is noticeable is the difference is positive and it increases with Stokes number. As the
particles cross the shear they extract turbulent energy from the mean flow – it’s the work done
by shear stresses in the streamwise direction which appears as an increase of turbulent kinetic
energy in the streamwise direction. The second graph in Figures 2(b) is even more revealing.
A calculation is made of the diffusion coefficients εij which relate the diffusion current ji to the
gradients of the concentration gradient i.e.

ji = 〈ui〉 〈ρ〉 − εij
∂

∂xj
〈ρ〉 (21)

Here we see the particle current composed of a convective term proportional to the local mean
carrier flow and a long term a diffusive current. What is most interesting is the particle diffusion
coefficient in the streamwise direction compared to that in the cross-streamwise direction. We
note that for all Stokes numbers it is –ve, which includes that for a passive scalar! This does
not imply however that contrary to the Second Law that a blob of particles will always contract
rather than expand? These diffusion coefficients make a small contribution to the way a blob
will diffuse. Particles will diffuse in the streamwise direction because as they move upwards
or downwards they will experience larger positive or negative velocities according to how far
away they are away from the origin. And that displacement is randomly positive or negative
because it is determined by dispersion in the cross streamwise direction. So it is this process
that makes the blob stretch in the streamwise direction. The –ve diffusion coefficients reduce
this process but never reverse it. Figure 3 shows a picture of the concentration contours and
the mean particle velocities at a time ∼ integral times after they were released from the centre
of the shear where the mean velocities are almost radial and later where they have rotated to
align with he velocities of the shear during which time the contours have expanded.

4. Transport and deposition in turbulent boundary layers
There has been intensive research over the last 20 years on the near wall behaviour of particles
suspended in a turbulent flow (see e.g. recent review by Li and Ahmadi [23] ), in particular how
particles interact with near wall structures and how this transports and deposits them at the
wall. In this regard DNS has been particularly useful in simulating the behaviour of the fluid
motion. Much of our understanding comes from particle tracking in these flows. Of particular
note is the work of Soldati and his co workers [37] in illuminating the transport mechanisms
and in developing models for the particle deposition which has been the major preoccupation
from a practical point of view. The problems here have been in formulating an appropriate
transport equation to account for the influence of the severe changes in the turbulence intensity
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Figure 2. Dispersion of particles in a simple shear based on Pope’s GLM versus Stokes number
β−1 Sis the strain rate normalised on turbulence integral time scale versus Stokes number β−1

. In the graphs εij = 〈υ′′i xj〉

a) short term dispersion b) Long term dispersion

Figure 3. Concentration contours and particle mean velocity St = 1,normalised strain rate
S =1, at (a ) t = 1(b) t = 6 where t is in units of the integral timescale. Concentration
contours represent a constant fraction f of the concentration at the centre of the shear,
f = 1=0.02n, n = 1, 2, ....k

in the near wall region which in general makes the particle transport entirely non local, i.e.
far from local equilibrium. In this regard the PDF approach has been particularly successful.
Whilst the two-fluid equations are inappropriate near the wall, the solution of the PDF equation
itself still provides a valid description. Furthermore the boundary conditions arising from the
particle wall interactions are only expressible in terms of boundary conditions for a PDF equation
since they involves changes in the velocity distribution at the wall. Traditional-fluid modelling
is inappropriate because the boundary conditions (bc’s) imposed are artificial. We note that
advection diffusion models for deposition are implicit in the particle momentum equation derived
from the PDF equations where the inertial term is ignored [30].
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j = 〈ρ〉υd − ε ·
∂ 〈ρ〉
∂x

(22)

where

υd = −τp
∂

∂x
· 〈υυ〉+ κ− ∂

∂x
· λ (23)

The drift velocity υd is composed of essentially of two terms that are of different origin. The
first term arises from the gradients of the kinetic stress and reflects a balance between a drag
force and the gradients of a stress, whilst the remaining terms are derived from body forces that
arise directly from spatial inhomogeneous in the flow. The first term has often been referred to
as turbophoresis [27]. For precise details on the application of the PDF approach to near wall
behavior and the influence of natural boundary we refer to the works of Devenish et al. [12],
Reeks and Swailes [33] and Darbyshire and Swailes [10].

4.1. Particle deposition in turbulent boundary layers
Deposition of particles in turbulent pipe flow has a huge literature associated with it (see [23])
- there have been many attempts at predicting the deposition as a function of particle size or
response time. The problem as we have seen is the rapid decay of turbulence near the wall and
the way the particles respond to that decay and the lack of local equilibrium with the flow. The
particles may start out in local equilibrium far away from the wall but their inability to follow
the steep changes in the fluid velocity means that at any point the particles have some memory
of their previous history - their velocity has more to do with where they came from than what
is happening to the fluid motion locally. The continuum equations break down. Not only that,
we have to deal with the problem of boundary conditions (bc’s) if we use continuum equations
because perfect absorption at the wall means that the only boundary conditions is that there
are no particles at the wall with velocities away from the wall. There is no means of fitting that
behaviour into a traditional no slip at the wall boundary condition. PDF equations are ideally
suited for this type of problem – they take account of the naturals bc’s and secondly they take
account of the influence of particle inertia and the steep turbulence gradients. They uniquely
handle both effects together which traditional models are incapable of doing. It is useful to
show some features of the near wall behaviour before considering what the deposition looks like.
The results are taken from the recent analysis of vanDijk and Swailes [42] based on solution
of the GLM PDF model using a discontinuous Galerkin method of solution. The Figure4(a)
shows the concentration ratio as a function of distance y+ from the wall (denoted by x2 in the
Figure 4) for a range of values of the particle inertia or particle response time in wall units τ+

equivalent to the Stokes number. You can see a significant peaking of the concentration near
the wall as τ+ reduces from very large values where the motion is basically ballistic (no response
at all to the near wall turbulence). Figure4(b) shows the ratio of the rms of the particle wall
normal velocities, υ2 to local fluid rms of the fluid u2 as a function of distance from the wall,
indicating that this ratio � 1 as you approach the wall because of the particles’ inertia and the
much higher velocities they have attained further away from the wall where the gradients of the
turbulence are much less.

Figure 4(c) for the particle pdf p(υ2, x2)shows that particles enter the domain at x2 = 100
for υ2 < 0, and subsequently move towards the wall via, mainly, a diffusive mechanism; the
pdf remains close to the local equilibrium state over a large part of the spatial domain. Closer
to the wall, at about x2 = 20, the fluid rms velocity decreases rapidly. The effect of this is
that the particles are no longer driven by diffusion, but start moving in free flight. Most of
the heavy particles (τ+ = 300, see Figure 4) have enough momentum to reach the wall, even
those that have a relatively low speed. Only very slowly moving particles get trapped near the
wall, and slowly drift towards adhesion atx2 = X0. This results in a small build-up near the
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a) near wall particle concentration ρ

b) near wall particle normal rms normal
velocities

c) near wall pdf p(υ2, x2) for τ+ = 10 d) particle velocity distribution for τ+ = 10 at
’wall’ (one particle radius from wall).

Figure 4. Particle near wall behaviour as a function of distance from wall y+ and particle
response time τ+ (both in wall units), van Dijk and Swailes [42] σp2is the local particle
equilibrium rms velocity in the wall normal direction.

wall of particles with low velocity. For lighter particles (τ+ = 10, Figure 4(c)) only the fast
particles reach the wall in free flight while most will be trapped. Hence the very sharp peak in
the pdf aroud zero particle velocity. This feature that would not be picked up in the particle
tracking because of the requirement of a very high resolution. This results in a strong build-up
in concentration which is also clearly visible in Figure 4(a), where the particle concentration,
ρ,in the boundary layer is shown. In fact recent work suggests that there is threshold velocity
of τ+below which particles are trapped in the region of almost stagnant fluid near the wall
and never get deposited (see the recent alalayis of Sikovsky [35]). Similar features have been
observed in particle pair collisions in homogeneous isotropic turbulence [16]. The normalised
particle velocity distribution, is presented in Figure 4(d), illustrates this process as well: the
distribution for τ+=300 has a significant tail, while for τ+ = 10 the distribution is strongly
localised near υ2/σp2 = 0.

Finally Figure 5 shows the predictions of the particle depositions velocity as a function of
particle response time τ+obtained by Zaichik[49] compared to a range of experimental and DNS
results. In particular Zaichik’s predictions were obtained by solving a closed set of moment
equations derived from the PDF kinetic equation. The closure is based on a quasi-normal
assumption for the fourth-order moments of particle velocity and local-equilibrium closure for
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Figure 5. Particle deposition in turbulent pipe flow Zaichik [49]

3-rd order moments (neglecting their advection). The method of solution has thus much in
common with the RANS approach in CFD involving Reynolds stress transport equations. Given
the experimental error is very large the PDF solutions predicts the huge changes in deposition
velocity from 10−1 to 10−5 for a change in τ+ from 10 to 10−1which reflects the role of particle
inertia on the deposition.

5. Segregation and Agglomeration
It is by now well known that turbulence, contrary to traditionally held views, can demix a
suspension of particles (see e.g. [14]). The process of segregation depends upon the ratio
of the particle response time to the timescale of the turbulent structures in the flow (i.e the
Stokes number, St). Early experiments and simulations (e.g. [9]) have shown that the demixing
reaches a maximum when the particle response time is approximately equal to the timescale of
the turbulent structure (i.e the particle Stokes number St ∼ 1), the suspended particles being
observed to segregate into regions of high strain rate in between the regions of high vorticity.
This feature is best illustrated graphically in Figure 6 which shows the segregation patterns
arising from a point source of particles diffusing in a 2-D random array of counter rotating
vortices. The Figure shows the segregation pattern at a given value of time (in units of the
integral time scale) after the source has been introduced into the flow for 3 values of the particle
Stokes number St = 0.05, 0.5, 5. It is clear that maximum segregation occurs for the case
of St = 1. What this Figure doesn’t show however is the fact that the segregation continues
in time, the patterns becoming more filamental. Whatever their Stokes number all particles
will segregate, it is just that the greater the Stokes number the longer the process takes to
achieve a given level of segregation. This is contrary to what many have thought that the
segregation reaches an equilibrium state. Particles will segregate until they touch. In fact what
happens is that the segregation forms a network of filamental caustics similar to the patterns
of light obtained at the bottom of swimming pools as shown in Figure 6(d) where within these
filamental networks it is observed that the light beams cross one another. Similarly in the case
of particle segregation in a turbulent flow within the filamental caustics particle trajectories
are observed to cross also. The formation of caustics in particle demixing processes was first
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Figure 6. Segregations as a function of particle Stokes number St (a)-(c) based on positions
of 104 particles after time t = 20 in a non-isotropic random straining flow, (d) caustic patterns
observed at the bottom of a swimming pool.

recognised by Wikinson and Mehlig [45] and this crossing of trajectories within a caustic is
intimately related to the occurrence of random uncorrelated motion (RUM) in flow fields that
are spatially random but smoothly varying. Fevrier, Simonin & Squires [15] have observed that
the spatial particle velocity field resulting from the motion of suspended particles in a direct
numerical simulation (DNS) of homogeneous isotropic turbulence consists of two components: a
smoothly (continuous) velocity field that accounts for all particle-particle and fluid-particle two
point spatial correlations (they referred to this component as the mesoscopic Eulerian particle
velocity field (MEPVF)); and a spatially uncorrelated component which we have referred to
as RUM (the component of random uncorrelated motion) whose contribution to the particle
kinetic energy increases as the particle inertia increases. Fevrier, Simonin & Squires attribute
this feature to the ability of the particles with inertia to retain the memory of their interaction
with very distant, and statistically independent eddies in the flow field.

Segregation and RUM are related to the occurrence of inter-particle collisions as follows
from the seminal work of Sundaram and Collins [40]and Wang and Wexler [43] in which they
demonstrate that i) segregation enhances the particle concentration of certain regions of the
flow, ii) RUM, i.e. the decorrelation of velocity between particles, causes two nearby particles to
collide and possibly to agglomerate. Segregation is well-known to manifest itself especially for
St ∼ 1, whereas the effect of RUM is almost invisible for small particles and becomes increasingly
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important for larger St. Since the interplay between these two effects determines the collision
rate in a turbulent flow, it is essential to quantify segregation and RUM as accurately as possible
as a function of the Stokes number and some typical flow properties in order to correctly predict
the rate of inter particle collisions.

In recent years, the process of segregation of inertial particles has been studied from different
viewpoints when the Stokes number is relatively small. On the one hand, [7] demonstrated a
strong correlation between the positions of small inertial particles and the locations of zero-
acceleration points in the carrier flow. On the other hand, [1] carried out a theoretical analysis
based on the assumption that the velocity of inertial particles can be directly related to the
carrier flow velocity. By doing so, they were able to show that the segregation of particles
continues indefinitely in the course of time, and they showed that the concentration of inertial
particles in a turbulent flow is highly intermittent, so the particles are distributed far from
uniformly over space. A similar approach was chosen by Chun et al. [8] who demonstrated that
the time-converged solution of the radial distribution function is of the form g(r) ∼ rβ, where the
negative number β is proportional to St2. In addition, they confirmed this by showing results
from a DNS of statistically stationary homogeneous isotropic turbulence. Most importantly the
PDF/ kinetic approach has been used by Zaichik ( [47] [48]) to obtain a similar result.

The understanding of dilute suspensions of inertial particles has been vastly extended by
interpreting the motion of particles in terms of dynamical systems theory. The first approach
in this direction was given by [38], and was later specifically applied to the motion of inertial
particles in turbulent flows by [2] and [45]. [45] derived an analytical expression for the Lyapunov
exponents associated with the motion of inertial particles in physical space. The derivation was
based on the assumption that the typical correlation time of the carrier flow was very small, i.e.
the Kubo number Ku� 1. Unfortunately, this assumption is not exactly valid in real turbulence
where Ku = O(1), as [45] acknowledge themselves. [2] showed that if the particle clustering
is fractal, the exponent in the radial distribution function is equal to β = nd − Dcorr, where
Dcorr is the correlation dimension introduced by [19], and nd is the number of dimensions of the
problem (nd = 2 in a two-dimensional flow and nd = 3 in a three-dimensional flow). [2] expressed
the clustering of particle in terms of its fractal dimension in phase space and showed how this
was related to the Lyapunov exponents of the 2nd-dimensional dynamical system. [3] obtained
a correlation dimension Dcorr by calculating the Lyapunov exponents in a Direct Numerical
Simulation of turbulence for a wide range of Stokes numbers, and found that nd −Dcorr scales
with St2, in agreement with the aforementioned results by [8].

We will describe now how a particular method known as the Full Lagrangian Method (FLM)
has been used very effective;y to investigate the statistics of particle segregation in both DNS and
in synthetic turbulence flows like those produced in kinematic simulation (KS). This method,
originally introduced by [25] but later used by [31] and [18], consists of calculating the size
of an infinitesimally small volume occupied by a group of particles, along the trajectory of
one single particle. This immediately yields the concentration of particles along the trajectory,
since the inverse of the volume occupied by a fixed number of particles corresponds to the
particle concentration by definition. We describe how the results from the FLM are converted
into statistics of the particle number density, thus providing a wealth of information on the
segregation process. In particular we describe here how the FLM can be used to quantify non-
uniformities in the spatial distribution of particles, the singularities in the particle concentration
field and the presence of RUM.
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5.1. The Full Lagrangian Approach
We consider small spherical particles acted on by Stokes drag for which the equation of motion
of each particle is given by

dx

dt
= v ;

dv

dt
=

1

St
(u− v) (24)

where x and v denote the position and the velocity of the particle, respectively, u = u(x, t)
is the velocity of the carrier flow at the position of the particle and St is the particles Stokes
number. FLM calculates the deformation of an elemental volume of particles as it moves through
the flow. The deformation of such a volume is characterized by the temporal evolution of the
unit deformation tensor J, whose components Jij are defined by:

Jij ≡
∂xi(x0, t)

∂x0,j
, (25)

where x0 is the position of the particle at some initial time say t = 0. Differentiating Eq. 25
with respect to time gives:

d

dt
Jij =

∂υi(x0, t)

∂x0,j
. (26)

d

dt
Jij =

∂υi(x0, t)

∂x0,j
. (27)

The second derivative with respect to time is:

d2

dt2
Jij =

∂

∂x0,j

(
dυi(x0, t)

dt

)
=

1

τp

(
∂xk
∂x0,j

)
∂

∂xk
ui(x, t)−

1

τp

∂υi(x0, t)

∂x0,j
. (28)

Inserting Eq. 25 and Eq. 27 into Eq. 28 results in the equations of motion of each component
Jij :

dJij
dt

= J̇ij ,
d

dt
J̇ij =

1

τp

(
Jkj

∂ui
∂xk
− J̇ij

)
, (29)

We choose as initial conditions Jij(0) = δij and J̇ij(0) = ∂ui(x0, 0)/∂xj . The volume
expansion J(t) =|det Jij | . If the initial distribution of particles is uniform over a certain
domain, the deformation in the course of time is inversely proportional to the particle number
density n(t) measured along the trajectory of one reference particle is related to J by

J = n−1(t) (30)

Thus a spatially averaged moments of the particle number density, n, can be calculated directly
from the deformation J along sufficiently many particle trajectories.

5.2. The Statistics of the compression
The Full Lagrangian Method can thus be used to determine the compressibility of the particle
phase, C which we define as J−1dJ/dt = dlnJ/dt. We can relate this to the divergence of the
particle velocity field vp(x, t) providing that the velocity field is single valued and continuous,
namely

C = d lnJ/dt = ∇ · vp(x,t)

We present some results based on the FLM for a ’kinematic’ flow field composed of 200
random Fourier modes (referred to as kinematic simulation (KS)) [22][24]. In addition we also
present the statistics of the particle number density and the contribution that RUM makes to
the kinetic energy of the transported particles. Fig. 7 shows the results of limt→∞ t

−1〈ln |J |〉 for
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Figure 7. Long term net compressibility as a function of time in flow field composed of random
Fourier modes (KS) and DNS of homogeneous isotropic turbulence

a wide range of values of Stokes numbers. It is noted that this value is equal to limt→∞〈C〉, i.e.
the time converged compressibility of the particle velocity field. We note that there is a critical
value of the Stokes number Stcr beyond which the net compressibility is positive rather than
negative.; in the present case, Stcr ' 0.7. If the particle Stokes number St is lower than Stcr,
then the particles are continuously compressed into smaller volumes in the course of time and
the process of segregation continues indefinitely. If, on the other hand, the Stokes number is
larger than Stcr, the particle volumes expands or alternatively if the particles are confined they
become fully mixed. This doesn’t mean that there is no segregation beyond the critical Stokes
number. It is clear that an average quantity only provides us with a picture of the net effect
between compression/expansion and what effect prevails in thecourse of time: a compressibility
– on average – does not necessarily mean that the segregation is zero everywhere. The same
applies to negative compressibility. Indeed, the sign of the compressibility can be related to
the topological distributionof the particle concentration field: as particles cluster, compression
zones appear (in the clusters) at the same time as dilation zones (in the depleted zones).

5.3. Statistics of the particle number density
Now we investigate the statistics of the particle number density in the course of time. The
moments of the particle number density nα have been determined for both the KS and DNS
flow fields. The results are shown in Figure. 8, for (a) St = 0.05 (b) St = 0.5 in the case of the

KS flow field and in (c) for St = 0.4 for a DNS flow field. In all cases the value of n0, which
corresponds to 〈|J |〉, remains equal to unity for all time, as expected. The other moments of the
particle number density are markedly higher than 1 and are associated with the non-uniformity
in the spatial distribution of particles.

There is a qualitative distinction between the cases of small Stokes numbers such as St = 0.05
in Fig. 8 a), and large Stokes numbers such as St = 0.5 in Fig.8 b). If the Stokes number is
large, it may happen that |J | = 0 for a particle due to the crossing of trajectories. These
intermittent events, which cause n→∞, dominate the statistics of higher-order moments of the
PDF at certain moments in time, as is reflected by the spikes in the curve for St = 0.5 in Fig.
8b). Hence, the spatial distribution of particles in a random turbulence-like flow may be highly
intermittent. This is also the case for the DNS moments in Figure 8(c)
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However, for sufficiently small Stokes numbers where RUM is not important (such as
St = 0.05 in Fig.8 a) ), we observe that nα depends exponentially on time and:

nα ∝ exp(γt), (31)

where γ is a function of α and St As can be seen in a), the higher-order moments grow faster
than the lower-order moments. This demonstrates unambiguously that the segregation process
continues indefinitely in this case where St = 0.05.

(a) KS St = 0.05 (b) KS St = 0.5

c) DNS St = 0.4

Figure 8. Spatially average of the α-th moment of the particle number density, nα, for KS flow
field a) St = 0.05; b) St = 0.5 (c) DNS St = 0.4

Random uncorrelated motion (RUM)
We present here results for the contribution RUM makes to the kinetic energy of the particles

transported in a KS generated carrier flow field. The values are obtained by measuring the
longitudinal velocity correlation between two particles separated by a distance r. Extrapolation
of the correlation to r = 0, gives an intercept for which the RUM contribution is 1 - this quantity.
The RUM contribution to the kinetic energy is shown in Figure 9(a) as a function of the particle
Stokes number St. We note that for St→ 0, the RUM contribution → 0 whilst for St→∞, it
→ unity i.e totally ballistic motion.

Figure 9(b) show the distribution of the fluctuating value of the compression C′ normalised
on its rms value obtained by Meneguz and Reeks [24]. Each value of C′ has been separated
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out into its RUM components and its smoothly varying mesoscopic component. We note that
negative values of C′ in the extreme range, are almost entirely made up of the RUM uncorrelated
component which is consistent with the formation of caustics of high regions of segregation and
concentration.

The results presented here show that particle inertia can have major implications for the
collision rates between particles. Two effects enhance the collision rate between particles: i)
preferential concentration of particles in relatively few regions of the flow, ii) RUM, i.e. the
decorrelation of velocities between neighboring particles so that particles are more likely to
collide with one another. From Fig.7 , we know that preferential concentration manifests itself
especially for 0.1 < St < 1. The effect of RUM is most visible for St > 0.5 and increasingly
important for larger St. Collision rates are therefore expected to be highest in the Stokes number
regime St > 0.5. Certainly more research is needed to confirm this statement, but the results
presented in the seminal paper by [40] do point in that direction, since they found a maximum
collision rate for a Stokes number St (based on the smallest scale of the flow, the Kolmogorov
time scale) of 2 < St < 5, with a collision rate vanishing for St ↓ 0, and a collision rate decreasing
only slowly with St if St > 5.

6. Summary and Conclusions
This paper describes methods and approaches that have been used to simulate and model the
transport, mixing and agglomeration of small particles in a flowing turbulent gas (referred to as
turbulent aerosols). The transported particles because of their inertia are assumed not to follow
the motion of the large scales of the turbulence (referred to as one point particle dispersion) and
or the motion of the small dissipating scales of the turbulence (referred to as two point particle
or relative dispersion). The major studies of one point particle transport have been associated
with developments in two-fluid modelling where the particles are treated as a fluid in the same
way as the carrier flow. The purpose has been to find suitable forms for the continuum equations
of the dispersed particle phase together with the constitutive relations. The objective has been
to model complex dispersed flows using much the same approach as in CFD for single phase
flow. Of great value in this approach has been the application of the PDF approach involving
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a Master Equation analogous the Maxwell-Boltzmann equation of Classical Kinetic Theory. In
this paper we looked at two PDF approaches, a kinetic approach which is concerned with the
probability that a particle has a certain velocity and position and an alternative approach which
considers an extra random variable, namely the carrier flow velocity measured by the particle
along its trajectory. It was referred to as the GLM approach because the equation of motion
for this flow velocity is based on a Generalized Langevin model (GLM) used by Pope [17]. We
have described the success of these approaches in modelling simple generic flows and transport
of particles in a turbulent boundary layer.

The work reported on two particle dispersion has been about methods of measuring and
analyzing the statistics of particle segregation. In particular we have described the Full
Lagrangian Method (FLM) which measures the deformation of an elemental volume of particles
as it moves through the fluid along a particle trajectory. The statistics of the segregation process
has been described in terms of the statistics of the compressibility which is shown to have a mean
component and a fluctuating which is close to Gaussian except in the wings where the existence
of singularities contributes to extremely large values of negative compression and the moments
of the particle concentration. We have shown that these features are all compatible with the
formation of caustics.
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