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Abstract. We analyze the effects induced by single-ion anisotropy on quantum criticality in
a d-dimensional spin-3/2 planar ferromagnet. To tackle this problem we employ the two-time
Green’s function method, using the Tyablikov decoupling for exchange interactions and the
Anderson-Callen decoupling for single-ion anisotropy. In our analysis the role of non-thermal
control parameter which drives the quantum phase transition is played by a longitudinal external
magnetic field. We find that the single-ion anisotropy has substantial effects on the structure
of the phase diagram close to the quantum critical point.

The study of quantum magnetic systems is a very active research subject in condensed matter
physics [1, 2]. In particular, field-induced quantum phase transitions (QPTs) and anisotropy
effects have been the focus of a great amount of theoretical and experimental investigations
[3, 4]. Moreover, quantum critical points (QCPs) [3] are currently considered responsible for the
unusual low-temperature properties observed in many low-dimensional magnetic compounds.
Furthermore, there are also clear evidences that magnetic anisotropies of different nature play a
fundamental role and lead to new interesting phenomena [5, 6]. Indeed, anisotropic Heisenberg
models have attracted increasing attention as a basic tool to understand relevant properties
of several magnetic materials. In particular, Heisenberg models with easy-plane or easy-axis
anisotropies [7] have attracted a lot of interest, especially for low-dimensional ferromagnets
(FM) and antiferromagnets (AFM). In this context, in constructing spin models for several
anisotropic magnetic samples, one has also to face the presence of additional crystal anisotropic
fields as single-ion anisotropy (SIA) [8].

Intensive studies [9, 10] have been focused on the XXZ model with exchange anisotropies and
in the presence of an external longitudinal field h. In this paper we consider also the inclusion
of STA [8, 11], hence we are going to study the following Hamiltonian (in convenient units)

N N N
1
H=—3>" [Jij(sgﬁs;c +5YSY + Ast;)} ~h> 57 - DY (7). (1)
ij=1 i=1 i=1
Here S#(a = z,y,%2) denote the components of the vector spin operator S; at site i of a

d—dimensional hypercubic lattice with N sites, satisfying the commutation relations [S§, Sf | =
i€0370i55; (apy is the usual Levi-Civita tensor), J;; (with J; = 0) is the planar exchange
coupling between the spins at sites ¢ and j, A gives the strength of the exchange anisotropy,
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h is the external longitudinal field and D is the STA paramter. Positive or negative values of
Ji;j correspond to FM or AFM cases. Our attention is devoted to FM models and one has a
uniaxial ferromagnet if A > 1 (easy-axis exchange anisotropy), the isotropic Heisenberg model
when A = 1, and the planar ferromagnet (PFM) if A < 1 (easy-plane exchange anisotropy). As
concerning the SIA parameter D, we have that D > 0 gives rise to easy-axis SIA and D < 0 to
easy-plane one. This kind of anisotropy has to be necessarily included in several situations to
obtain a more accurate correspondence between theoretical finding and experimental data and
occur only in system with spin S > 1. In the present paper we are going to consider the peculiar
case S = 3/2, also because there are certain ferromagnetic compounds, containing Fe3", which
assumes the unusual spin S=3/2 state and where crystal field effects are important [12].

In absence of SIA, the PFM exhibits a magnetic-field-induced QPT [4, 9, 13] with
characteristics similar to those of the XY model in a transverse field [14]. The model was
first introduced and studied, at a mean-field approximation (MFA) level, by Matsubara and
Matsuda [15] as a pseudospin model for a gas of hard core bosons with attractive interaction to
explain superfluidity in *He. On the experimental front, several magnetic compounds as spin
dimer Cs3CryBrg [16], the cuprate Sr14Cug4O4; [17], the crystal CaV2Os with layers of coupled
two-leg ladders [18], and the laddered SrCuyOj [19], exhibit field-induced QPTs which appear
to be qualitatively well described by the model (1) with easy-plane exchange anisotropy.

However, due to the complex crystalline structure of magnetic materials and, in several
cases, the quantitatively unclear validity of the conventional paradigm of quantum criticality
[3], it seems reasonable to explore the effects of additional anisotropic crystal fields on the ideal
quantum criticality in the PFM.

We use the two-time Green function (GF) method by adopting the Tyablikov decoupling
(TD) [20] for the exchange anisotropy and the Anderson-Callen decoupling (ACD) [21] for the
single-ion term in the equations of motion chain. At this level of approximation one must keep
in mind that the TD was shown to achieve nearly exact predictions close to the field-induced
QCP of the PFM in absence of the STA [10, 9], while the ACD is widely used for the SIA term,
although this approximation may be not valid for large values of the parameter D [11, 22].

We follow the Callen approach for the isotropic Heisenberg model [23], which has been
used also when anisotropies are presents [9, 24]. We introduce the retarded two-time GF for
commutator (in units & = 1)

Gyt —t) = (St =)™ 57) = —ib(t —¢')([S; (t = 1), " 7)) (2)

where A(t) = et Ae=™t §(z) is the step function, (---) denotes the equilibrium average with
Hamiltonian (1) and 8 = 1/T is the inverse temperature. The auxiliary Callen parameter a has
to be set to zero at the end of calculations for extracting the physics of the model.

The equation of motion for the time Fourier transform G;;(w) is

(w = h)(S 1€ S} Nw = ¥(a)dij — Y (Tni(SFS) 3)
h

—AS;S)|e™ S ) + DYSEST + 575715 S N,

where
(a) = (S}, e S7)), (4)
is a site independent quantity to be determined as a function of the Callen parameter a. In
particular, 1(0) = ([S;, S ]) = 2m, where m = (S7) is the longitudinal magnetization per spin.
In order to get a closed equation of motion for G;j(w), the higher order Green’s functions on
the right hand side of eq. (3) has to be properly decoupled. We adopt here the TD [20], for the
exchange interaction term

(SES e S5 o = (SIS 15 S N (5)
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and the ACD [21] to decouple the single-ion term,

(757 + S;7S71e%7 S} ) = 2C5(S7) (571" 57 (6)

252
in terms of (S7) and (S; S;") using the identity (S7)* = S(S+1) — S7 —S; S;". With S = 3/2,
as in the case under study, it is C5/p = 1 —2/9[(S7?) + (S;S;)].
Using the above decoupling approximation, the equation of motion eq. (3) reduces to

with Cg = 1— 515 [S(S + 1) — ((S7)?)]. The term ((S7)?) in the coefficient Cs can be expressed
2

[w—h = m(AJ(0) + 2C52D)] Gij(w) = (a)di; — m Y _ Jj Gij(w) (7)
l

where J(0) is the zero-wave-vector Fourier component of J;;.
Using Fourier transforms, with the wave-vectors k ranging within the first Brillouin zone
(1BZ), the equation of motion is readily diagonalized providing the formal solution

Gr(w) = : (8)

with w — w +ie (¢ — 0T1) for retarded GF where
wi = wo +m[J(0) — J(k)] (9)
is the energy spectrum of the undamped spin-excitations and
wo =h—m[J(0)(1 —A) —2C5/,D] (10)

is the corresponding energy gap. The quantity C3/, can be consequently written, via the spectral
theorem [20], as C3/9 = 1 — 21 (1 +2@), where

1 1 Now d’k 1
b - — - =z —_—. 11
N;eﬂwk—1 /1BZ (2m)d ePer — 1 (11)

The key point in our scheme is to determine the expression of 1(a) as a function of the Callen
parameter ¢ and hence of m = (0)/2.
Following ref.[24] we find for the magnetization

3 4
mzi—@—f—mEM(@). (12)

Egs. (9)-(12) constitute a set of self-consistent equations to determine m, Gx(w) (at a = 0), and
other relevant thermodynamic quantities as functions of T and h, for fixed values of the SIA
parameter D.

To study the static and dynamic properties, we need the transverse GF

G1(k,w) = (S5 Mkw = Gr(W)la=o , (13)
which, at our level of approximation, is given by

2m

G (k,w) = (14)

W — Wy
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This leads to the dynamical transverse susceptibility

2m
k =-G,(k = , 15
X1llew) = ~G (k) = =" (15)
and, as a particular case, the static one
2m
XL(Tah):XL(kZOaWZO):TO' (16)

The stability condition on susceptibility (x; > 0) implies that wy > 0. Thus the equation wy = 0
(x1 — o0) defines the stability boundary and hence the possible critical points.

Hereafter we will consider only the case of easy-plane exchange anisotropy (A < 0), in order
to explore the effects of the SIA on the quantum criticality in a planar ferromagnet (related to
the field-driven in-plane ordering described by the quantities wg and x as function of 7" and h
9, 10, 24].

In absence of SIA (D = 0) the systems exhibit a QPT at the value of the field ho. =
%J(O)(l — A). In the presence of the SIA, the QPT does not survive for all the value of the
parameter D. Let us rewrite the expression for wy

wo = h — M(®) [J(o)u _A)-2D (1 _2M(®)

(1+2<I>)>} , (17)
which is a self-consistent expression, reminding the definition of ® (see (11)).

As first step we study the problem at zero temperature. Since as T' — 0 we have that & — 0,
then from eq.(12), we get M(0) = m(T = 0) = 3/2. Hence, for the gap equation at 7' = 0 we
have

wo = h— g [J(O)(l YN ;lD] — h— hge + 2D. (18)

Thus, for h > hg. — 2D, we have for the static transverse susceptibility

_ 3 _ 3
~ h—hoc+2D " h—he

XL (19)
This expression clearly shows that a QCP exist for any dimensionality of the systems and the
critical magnetic field at T' = 0 is h. = ho. — 2D, which depends on the strength of the SIA
parameter D. Moreover we obtain for susceptibility a mean-field like behavior, with critical
exponent v = 1, hence at zero temperature the STA produce just a shift of the QCP. However if
D = hy./2 we have a zero critical field, i.e. a suppression of the QPT. Thus, quantum criticality
is realized only if D < D = 2J(0)(1 — A).

We now analyze the system at finite temperature. We limit ourselves to the case of short-range
exchange interaction and d-dimensional hypercubic lattice, with interaction J(k) = J(0) — Jk2,
with J(0) = 2d.J. From now on all quantities will be written in unity of J. The basic quantity
to solve our problem is the function ® (11). On the phase boundary, being wy = 0, we have

dk 1
¢C == (:D wo= = .
| 0= /13Z (27rd) e%ﬁjw(q%)k2 -1

(20)

It is evident that,while a QCP exists for any d, a finite temperature critical line ending in the
QCP, may take place only for dimensionalities which assure the convergency of the integral (20).
Indeed, we see that only for d > 2 we have a finite temperature critical line, ending in the QCP
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(I' = 0,h = h¢), consistently with the Mermin-Wagner theorem [26]. In such a case we can
write a critical line equation (using egs. (17) and (20))

2 2M (D,
h — M(®.) I:3h0c - 2D (1 - Eg)(l + 2<I>c)>] =0. (21)
This self-consistent equation has been solved numerically for d = 3, for three different value

of the exchange anisotropy parameter A, and changing the SIA parameter D. The results are
shown in fig. 1.
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Figure 1. Critical lines for different values of single-ion anisotropy parameter D in the (h,T')-
plane as obtained by solving numerically the general equation (21) at d = 3 for three different
values of the parameter A: namely, from left to right, A = 0.1, A = 0.5 and A = 0.9. The
borderline value D* of the single-ion anisotropy parameter D is defined in the text.

By inspection of the figure it is evident the effect played by the SIA on the phase diagram
of the ideal PFM (D = 0). The typical behavior of the known critical line ending at the QCP
of PFM with D = 0 breaks down when D exceeds the value D*, which numerically for d = 3
is found to be D* = (1 — A). For smaller values of D the shape of the critical line remains
essentially similar to that of the PFM in absence of the SIA, hence we expect that also the
low-temperature behavior around the critical line should be preserved.

In the following we will consider only D < D* in order to study the effects of STA on
conventional quantum criticality of PFM.

Analytical expressions can be derived in asymptotical regimes. Hence we consider the two
following cases: (i) T'— 0 and (ii) A — 0. In the first case, i.e. close to the QCP, we have [24]

he(T) =~ he — by(he — 2D)T%? (22)

where b, is a coefficient which depends on the spin S and on the dimensionality of the system.
In the present case, with S = 3/2 by = ((d/2)/[2(4=2/23(d+2)/224/2] "in particular for d = 3
we have b3 = ((1.5)/(9v673/?) ~ 0.0213. By inspection of equation (22), we see that
there exists a value of D above which the coefficient of T%2 changes sign, i.e. for D > h,,
and hence the low-temperature part of the critical line shows the reentrant behavior. This
provides the analytical expression for the borderline value D* of the SIA parameter D, which is
D* = hy./4 =3J(0)(1 — A)/8, that coincides with the numerical result for d = 3.
For case (ii), i.e. in the limit A — 0, we have [24]

5d? ) 3 h?2

1— (124 — | or 77
< 125 h, + 2D

T.(h) ~ T.(0) P

; (23)

where

—2/d
7,(0) = %%2 (gf(d/2)> . (24)
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The critical temperature at zero field 7,(0) does not depend on the value of the SIA parameter
D.

We proceed now by studying the low-temperature properties and crossovers of our anisotropic
XXZ ferromagnet in the easy-plane disordered phase close to the QCP where the energy gap
wp is small. In this low-T regime, being ® very small, we can use a simplified expression for
magnetization M(®) ~ 3 — &. Furthermore, considering the limit 7 — 0 in the integral (11)
which defines ® and with wy = wg + mk?, we have

K, (T\Y?2 oo (d—2)/2
R (el dr——— (25)
2 m 0 eﬁWO‘*‘x —1
The integral which appear in the above equation is the Bose-Einstein function F,(y) =

I dx% for which the asymptotic expansions in y for different values of v are known [9].
This provides for the magnetization

/2
(2T) Eyys(wo/T). (26)

We can then write a self-consistent equations for the energy gap wp, to leading order in T'
wo~h—he.+ ?d(hc —2D) <3T> Fyja(wo/T) (27)

For any d, with h > h, in the quantum regime we find for the energy gap (with Fy/9(wo/T) =~
L(d/2)e”/T)
wo(T, h) = (h — he) + T(d/2)Cq pT?e” =)/ T (28)

which differs from the MF result wy ~ (h — h.) for an exponentially small correction in
(h—he)/T > 1. In eq.(28) it is Cyp = 52(2/3)¥/%(h. — 2D).

We now determine the asymptotic solution of (27) in the classical (wo/T" < 1) and quantum
(wo/T > 1) regimes, and related crossovers, for d =2 and d > 2.

oed=2

For this value of dimensionality we do not have a critical line, but only a QCP for D < D.
Close to the QCP, the energy gap equation is obtained setting d = 2 and Fi(wy/T) =
In(1 —e~«0/T)=1 in eq. (27). This equation, which is valid for arbitrary wo /T, cannot be solved
in general but one can obtain explicit asymptotic expressions in relevant regimes.

We start with the classical regime. Simple considerations show that no physical solution
occurs for h > h. while, for h < h. and (h. — h) > T, one easily gets

he —h
T,h)~T — . 29
wo(T, ) exp[ CQ’DT] (29)
This result implies that the transverse susceptibility (and hence the correlation length £, o Xi_/ 2)

diverges exponentially as T' — 0 at fixed h < he.

Within the region of the (h,T)-plane delimited by the two crossover lines T~ = h. — h and
Tt = h — he, we can obtain a consistent asymptotic solution for |h — h.| < T only assuming
wo/T finite. Let us first rewrite eq.(27) for d = 2

wo h—he he—2D 1
— = 1 .
T T o " <1 - e—wo/T> (30)
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We are interested in the behavior on and around the so-called quantum critical trajectory (QCT)
h = h¢, where we can rewrite eq. (30) in the form wy = bT where b is determined by the equation

b=Cypln <ﬁ> Then by expanding eq. (30) in (h — h.)/T with wo/T = b as zero order
solution, to leading order in h — h,, the energy gap reads

wo(T, h) = bT 4 [1 + Cop(e® — 1) "Hh — h,) . (31)

The phase diagram for d = 2 is shown in fig. 2. It is worth noting that the previous scenario
breaks down as D — D* (i.e. Cyp — 0), as expected.

od>2

For such dimensionalities a critical line exists ending in the field-induced QCP, and it is
convenient to rewrite eq. (27) in terms of the distance g(7') = h — h(T) > 0 from the critical
line in the disordered phase. This is simply performed by combining eqs. (22) and (27) to write

wo = g(T) + Ca(D)T?Gyya(wo/T) , (32)

where Gg/9(y) = Fa/2(y) — Fy2(0). The full low-temperature physics for d > 2 follows from
this equation but we limit ourselves to 2 < d < 4 since for d > 4 MF-like findings can
be trivially obtained with logarithmic corrections at d = 4, consistently with the theory of
critical phenomena. We first explore the classical regime wo/T < 1, where Gg/o(wo/T) =~

—n|sin(7d/2)| = (wo/T)¥?~1. This lead us to the equation for the wp

mC3,p T2

~g(T)— ———
0 =90 = [ Gamd /) 0 (33)
whose asymptotic solution are
g(T) far from the critical line
wo(T, h) ~ : 2 25 34
of ) <%) - (@) 42 Close to the critical line. (34)
For transverse susceptibility, in the region close to the critical line, we then have
h 71'03 D d=2 2 __2
T,h) ~ : Ta—z2 (h—he(T)) a2,
=3 (e ) T e h() (35)

hence the susceptibility diverges with a power-law in h — h.(T), with the spherical critical
exponent v = 2/(d — 2), independently of the anisotropy parameter. Far from the critical line
we have instead the mean-field critical exponent v = 1. The crossover line which separates this
two asymptotic behavior is

2
Cqp |%7,, 2
ha(T) ~ h (T _—_ T34, 36
o) = () + | o (36)
Let us finally consider the behavior along the QCT, where h = h.. Here we have

7C3,p
| sin(md/2)|

d/2—1

wo = bg(he — 2D)TY? — Tw) (37)

and hence, at low temperature, we have for the susceptibility x| ~ 7-%2. Within a narrow
region around h = h. the energy gap and all the related thermodynamic quantities behave
essentially as along the QCT, except for negligible corrections in (h — h¢)/T.
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Increasing h — h, > 0 a crossover to the quantum regime wy/7 > 1 occurs which is
characterized by the solution (28), valid for any d. In fig. 2 the phase diagram with crossover
line for d = 3 is shown and compared with that for d = 2.

Previous results for 2 < d < 4 close to the field-induced QCP in the presence of SIA with
D < D* is similar to those found for conventional paradigmatic quantum models [3] by means
of the RG approach. However, if D — D* the SIA tends to destroy the conventional quantum
critical scenario.

d=2 and D<D’ d=3 and D<D"

QCT
QCT

critical Ginzburg
line line

T (h)
T (h)
ORDERED
PHASE

Quantum
regime

h, h he h

Figure 2. Phase diagram with crossover lines for dimensionalities d = 2 (left) and d = 3 (right).
In both cases we consider small value of single-ion anisotropy parameter D, namely D < D*. The
phase diagram looks qualitatively similar to the one obtained in absence of single-ion anisotropy
[9]-

In conclusion, we used the two-time GFs method to explore the effects of the SIA on the
magnetic-field-induced quantum criticality of a d-dimensional spin-3/2 PFM with short-range
exchange couplings. The full phase diagram in the (h,T')-plane and the main physical proper-
ties at fixed single-ion parameter D have been obtained at the level of the TD and the ACD
for higher order exchange interactions and STA GF's, respectively. We stress that in our study
the applied magnetic field h is assumed as the non-thermal control parameter driving quantum
criticality, in contrast with recent literature where this role is played by the parameter D at
fixed h (frequently assumed equal to zero). The emerging feature is that the phase boundary of
the PFM is significantly influenced by the SIA, especially close to the QCP, but the quantum
criticality of PFM for different dimensionalities remains essentially unchanged for values of the
SIA parameter smaller than the threshold value D* = 3J(0)(1—A)/8. Indeed we obtain, within
our approximation, mean-field-like critical exponents at the QPT and critical exponents belong-
ing to the spherical model universality class at finite temperature. These are the same results
obtained in absence of SIA [9, 10]. Hence, the inclusion of SIA does not affect the universality
class of the model. For D* < D < D, where D = hg./2 is the value of D at which the QCP
is suppressed, our self-consistent equations are substantially modified. As a consequence, for
d > 2, a reentrant low-temperature structure of the phase diagram appears (see fig. 1) and a
modified quantum critical scenario is expected. The detailed analysis of the reentrant feature in
the the phase diagram will be the subject of a future study. One may argue that the reentrant
behavior may be due to the approximation used. Unfortunately, to our knowledge, no land-
marks are available from literature about the STA effects on quantum criticality controlled by
an external magnetic field. Hence, at the present time, one cannot draw definitive statements
about the role played by large easy-axis anisotropy in the vicinity of a magnetic-field-induced
QCP. On the other hand, there is no clear reasons to consider “a priori” the ACD inadequate
to provide physical findings around a QCP. Moreover, reentrant features in the phase diagram
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usually arise when there are competing interactions. Furthermore, in the light of our numerical
and analytical results, we speculate that the existence of D* and of the easy-axis anisotropy
regime for values of D in the limited range D* < D < D are physically plausible. Indeed, the
feature that the zero-temperature critical field k. vanishes as D — D suggests that increasing of
the easy-axis anisotropy parameter tends, as expected, to suppress quantum critical fluctuations
until, for D > D, no field-induced QPT takes place. In this picture, D* represents a borderline
value of D between an anisotropy regime for 0 < D < D*, where the conventional quantum
critical scenario is preserved, and that for D* < D < D, where reentrant phenomena appear
in the low-temperature phase diagram close to the QCP and a non-conventional magnetic-field-
induced quantum critical scenario is expected.
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