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Abstract. The recent stage of the magnetohydrodynamic energy principle applied to
laboratory and space plasmas is briefly reviewed. In detail, the energy principle is presented for
an internally homogeneous pinch in a perfectly conducting wall. The plasma is separated from
the wall by a vacuum. The principle is applied to ITER-type and lightning systems. Thereat,
a system of mathematical equations of motion for fluid elements is derived using a cylindrical
coordinate system. But the obtained equations may be also applied to plasmas with disturbances
of non-cylindrical symmetry. From the equations of motion, an analytical relation for the radial
displacements of the fluid elements is presented, which describes magnetohydrodynamic waves
as e.g. sausage and kink ones. The numerical results here presented are, as a first step, only
performed for plasma disturbances with cylindrical symmetry and outer azimuthal magnetic
fields directed parallely to the conducting wall. Thus, the dispersion relations for sausage
instabilities in ITER-type and lightning plasmas are solved. It is shown for which values of the
inner and external magnetic fields of the systems instabilities occur. In case of lightnings, the
radial displacements in the plasma are estimated.

1. Introduction

In nuclear fusion systems, plasma instabilities getting unstable for different reasons interrupt
the fusion process and make the application of nuclear fusion for an energy gain in reactor
systems up to now unachievable. In the Earth’s magnetosphere, plasma instabilities modify
the physical parameters and vary the transport of solar energy and radio signals from vertical
sounding stations. Thus, it is essential to study plasma instabilities in both nuclear fusion and
magnetospheric systems. Using the energy principle of magnetohydrodynamics (MHD), this all
can be done without knowing the exact values of growth rates of unstable waves. According to
[1], the growth rates of MHD instabilities in inertial fusion plasmas are, anyway, on the order or
smaller than 5 percent of the possible observation times. And if even shorter observation times
will be possible in future, the application of the MHD energy principle will often be much easier
as a kinetic calculation of the growth rate.

Applying the MHD energy principle means to analyse, if the potential energy of the plasma
system may decrease for any of its allowable small displacements. If this is the case, the system
is unstable. Thus, applying the MHD energy principle, one has to solve variational problems for
the potential energy.
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The MHD energy principle is only applicable if the force on the particles is self-adjoint in
the plasma. Because of this self-adjointness, a decrease of the potential energy is equivalent to
a negative square of a frequency of a wave excited in the system. Thus, the analysis of the self-
adjointness of the force is an important problem. Recent applications of the energy principle
to systems with different plasma boundaries, especially to space systems, show that the self-
adjointness reduces the number of the allowable small displacements which may be taken into
account.

The present work considers instabilities in plasmas which are described within the frame of
ideal MHD, that means the system has an infinite electrical conductivity. Hence, in section
2 the energy principle of ideal MHD is briefly introduced. Section 3 reviewes recently used
extended energy principles which are applied for plasmas not bounded by a vacuum and/or
perfectly conducting wall, and where the magnetic field at the plasma boundary is not directed
parallelly to the boundary. In section 4, the MHD energy principle is applied to an internally
homogeneous pinch. There an analytical equation is derived to describe axial fluid displacements
in systems with non-cylindrical disturbances. Numerical applications are performed for systems
with cylindrically symmetric disturbances in sections 5 and 6 for ITER-type and lightning
plasmas, respectively. Some conclusions are made in section 7.

2. Energy principle of ideal MHD

The present work considers instabilities in plasmas which may be described within the frame of
ideal magnetohydrodynamics, the basic equations of which are the continuity equation

dρ

dt
= −ρ∇~v, (1)

the momentum balance

ρ
d~v

dt
= ~j × ~B −∇p+ ρ~g, (2)

the equation of state

d

dt

[

p

ργ

]

= 0, (3)

and the Maxwell equations without displacement current

∂ ~B

∂t
= −∇× ~E, (4)

∇× ~B = µo
~j. (5)

From the Ohm’s law
~j = σ( ~E + ~v × ~B) (6)

follows in the approximation of ideal MHD

∂ ~B

∂t
= ∇× (~v × ~B). (7)

The 14 scalar expressions (1-3, 4-5, 7) form a full system of equations of ideal
magnetohydrodynamics to determine the 14 variables plasma pressure p, mass density ρ, fluid
velocity ~v, vectores of magnetic induction ~B and electric field ~E, and electrical current ~j.
Besides, the Maxwell equation

∇ ~B = 0 (8)
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is valid.
Expressing the momentum balance of the linearized MHD system of equations (2) by the

Lagrange displacement ~ξ, using the relation between the Euler velocity ~u(~r, t) and the Lagrange
velocity of a fluid element (which was situated at ~ro at time to)

∂~ξ(~r, t)

∂t
= ~u(~r, t) ≈ ~u(~ro, t) + (~ξ · ∇)~u+ ... ≈ ~u(~ro, t), (9)

the momentum balance may be written in the form

ρo
∂2~ξ

∂t2
= ~F (~ξ). (10)

~F (~ξ) = ∇(γpo∇ · ~ξ + (~ξ · ∇)po)

+
1

µo

(

(∇×∇× (~ξ × ~Bo))× ~Bo + (∇× ~Bo)× (∇× (~ξ × ~Bo))
)

− ~g((~ξ · ∇)ρo + ρo∇ · ~ξ)

gives the force on a fluid element in the plasma (~g - gravity acceleration).

Further it is assumed that the separation of variables

~ξ(~ro, t) = ~ξk(~ro)τk(t) (11)

is possible and the function τk(t) describes a plain wave

τk ∼ exp[i(ωkt+ ϕk)]. (12)

Then, ωk is the solution of the equation

−ρoω
2
k
~ξk = ~F (~ξk). (13)

For the potential energy density W , ~F = −∇W , it follows

W = −
∫ ~ξ

0

~F (~η) d~η = −
~ξ

2
~F . (14)

Thus, for the stability of the MHD system it is necessary and sufficient that the potential energy
caused by the plasma displacement ~ξ has no negative values.
Taking the MHD stability condition for ideal plasmas into account,

∇ po =
1

µo
(∇× ~Bo)× ~Bo, (15)

I.B. Bernstein, J.P. Freidberg [2-4], and Spatschek [5] found, that eq. (14) may be used for the
determination of instabilities in plasmas, surrounded by a vacuum, which are located in a fixed
conducting wall, provided that in addition to the volume contribution to the potential energy

WF =
1

2

∫

Vp

[

Q2

µo
+

1

µo
(∇× ~Bo)(~ξ × ~Q) + (∇ · ~ξ)(~ξ · ∇)po + γpo(∇ · ~ξ)2

]

d~r, (16)

a vacuum contribution

WV =
1

2µo

∫

VV

(δ ~BV )
2 d~r, (17)
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Figure 1. Comparison of the boundary condition of a laboratory plasma at a conducting wall
with a vacuum barrier sheet (left side) with the boundary condition of the magnetosphere at
the Earth’s surface with an ionospheric barrier sheet. σP - electrical conductivity of the plasma,
~Bi - magnetic field of the plasma, ~Be - magnetic field at the plasma-vacuum boundary and in
the Earth’s atmosphere, respectively. An analogous figure, the work [6] contains.

and a surface contribution

WS = −1

2

∫

S

(~ξ · ~n)2~n · ∇
(

po +
B2

o

2µo
− B2

V

2µo

)

d~S (18)

are taken into account.

W = WF +WS +WV , ~Q = ∇× (~ξ × ~Bo). (19)

3. Boundary conditions

Indeed, eqs. (16-19) may be applied for laboratory fusion systems, where the magnetic field is
parallel to the walls. But for magnetospheric systems, with non-parallel magnetic field lines,
additional conditions follow for the allowable displacements ~ξ. Besides, in case of the Earth’s
magnetosphere, the plasma is surrounded by a vacuum at lower altitudes, and by an ionospheric
or magnetospheric boundary at larger altitudes (see Fig. 1). Such boundary conditions were
first studied by Miura [6], who introduced two approximations. First he took only geomagnetic
field lines into account, which are perpendicular to the ionospheric boundary, and second, he
neglected the neutral atmosphere. In doing so he found that when the vectors ~ξ and ~η satisfy
the boundary conditions

η‖ = 0 or ∇ · ~ξ = 0 (20)

and
η⊥ = 0 or ( ~B · ∇)ξ⊥ = 0 (21)

at the unperturbed ionospheric boundaries, the force operator of the plasma of the Earth’s
atmosphere is self-adjoint. But, taking the neutral atmosphere into account, ∇ · ~ξ 6= 0 is valid,
and the second condition of eq. (20) is not satisfied.

4. Application to an internally homogeneous pinch

Now a homogeneous plasma is considered. It is assumed that the plasma is located in a cylinder
in the equilibrium state. In the plasma, a uniform axial magnetic field Bz~nz exists. Further,
it is supposed that the plasma is surrounded by a vacuum region, and in the vacuum only an
azimuthal magnetic field is located. The whole system consisting of the cylindrical plasma core
and the surrounding vacuum is contained in a cylindrical conducting shell. That means, the
plasma does not contact the shell at all, there is a vacuum boundary between the plasma and
the shell.
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In the homogeneous plasma of the core of the pinch, ∇ × ~Bz = 0 and ∇po ≈ 0. The
approximation ∇× ~Bz = 0 was first introduced by Sturrock [7] and Spatschek [5], and it means
that no current exists in the inner part of the plasma (i.e. along the z-axis). Here, the same
approximation is used to compare partial results with that of the works [5, 7]. Indeed, in the
case of the θ-pinch with an axial magnetic field in the plasma core, the currents are almost
negligible along the symmetry axis (i.e. at r = 0 in cylindrical coordinates (r, ϕ, z)), and the
pressure gradients vanish (see Figs. 11.12 and 11.13, p. 266, in [7]).
Under such conditions, one finds for the minimum potential energy of the plasma in the cylinder
[8]

Min WF ≈ 1

2

∫

(

γpo(∇ · ~ξ)− ( ~Bz · ~Q)

µo

)

(~ξ · d~F ). (22)

The equation of motion (10) in the plasma reduces to

−ω2ρoξz = γpo
∂

∂z
(∇ · ~ξ), (23)

−ω2ρoξr = γpo
∂

∂r
∇~ξ +

B2
z

µo

[ ∂

∂r

1

r

∂ξϕ
∂ϕ

+
∂2ξr
∂z2

+
∂

∂r

1

r

∂

∂r
(rξr)

]

, (24)

−ω2ρoξϕ =
γpo
r

∂

∂ϕ
∇~ξ +

Bz

µo

[ 1

r2
∂2

∂ϕ∂r
(rξr) +

∂2ξϕ
∂z2

+
1

r2
∂2

∂ϕ2
(ξϕ)

]

. (25)

Further, to find the dispersion relation of the waves in the plasma, one may use the ansatz

~ξ(~r) = ~ξo(r)exp(imϕ+ ikzz) (26)

and simplify the spatial derivatives with respect to ϕ and z in eqs. (23-25)

(v2sk
2
z − ω2)ξz = ikz

v2s
r

∂

∂r
(rξr)− kzmv2s

ξϕ
r
, (27)

(v2Ak
2
z − ω2)ξr = (v2A + v2s)

∂

∂r

[

1

r

∂

∂r
(rξr)

]

+ im(v2A + v2s)
∂

∂r

(

ξϕ
r

)

+ ikzv
2
s

∂ξz
∂r

, (28)

(v2Ak
2
z − ω2)ξϕ = (v2A + v2s)

im

r2
∂

∂r
(rξr) +

imv2s −m2v2A
r

ξϕ
r

+
imkzv

2
s

r
ξz, (29)

v2A =
B2

z

µoρo
, v2s =

γpo
ρo

. (30)

With

X =
1

r

∂

∂r
(rξr), Y =

ξϕ
r
, (31)

one finds from eqs. (27, 29)

X =
(v2sk

2
z − ω2)

ikzv2s
ξz +

m

i
Y, Y =

r(v2Ak
2
z − ω2)

(m2 + im)v2s
ξϕ − [ik2zv

4
s + (v2sk

2
z − ω2)(v2A + v2s)]

kz(m+ i)v4s
ξz (32)

Substituting X and Y into eq. (28), and acting on (28) with the operator (1/r)(∂/∂r)r, one
obtains

(v2Ak
2
z − ω2)X =

v2Av
2
sk

2
z − ω2(v2A + v2s)

ikv2s

1

r

∂

∂r

(

r
∂ξz
∂r

)

, (33)

X =
−iv2sω

2 + iv4sk
2
z +m[v2sv

2
Ak

2
z − ik2zv

4
s − ω2(v2A + 2v2s)]

kz(im− 1)v4s
+

v2Ak
2
z − ω2

(im− 1)v2s
rξϕ. (34)
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Considering only equilibrium plasma systems with cylindrical symmetry (∂/∂ϕ = 0) and
neglecting eq. (25), which then describes pure Alfvén waves in the plasma (ω2 = k2v2A at any
ξϕ), one finds from (23, 24) at locally constant magnetic fields Bz (wave number k = kz)

∂2ξz
∂r2

+
1

r

∂ξz
∂r

− α2ξz = 0, α2 =
(v2sk

2 − ω2)(v2Ak
2 − ω2)

v2sv
2
Ak

2 − (v2s + v2A)ω
2
, v2A =

B2
z

µoρo
, v2s =

γpo
ρo

, (35)

which was already derived by Sturrock [9] studying the sausage instability. Thus, one has

ξz(r) =
const

α2
Io(αr), (36)

where Io is the modified Bessel function of first kind of order zero.
The equations (23, 24, 36) result then into a solution for ξr(z),

ξr =
v2s(v

2
Ak

2 − ω2)− v2Aω
2

ikv2s(k
2v2A − ω2)

∂ξz
∂r

= − i const

αk

[v2s(v
2
Ak

2 − ω2)− v2Aω
2]

v2s(k
2v2A − ω2)

∂Io(α r)

∂(α r)
. (37)

The analysis of α2 described by eq. (35) gives the following maximum and minimum values:

Max(α2) = ω2(vs − vA)
2/(v2Av

2
s) at ω = const, k2 = ω2(v2s + v2A − vsvA)/(v

2
sv

2
A),

Max(α2) = k2(v2s − v2A)
2/(v2s + v2A)

2 at k = const, ω2 = 2v2sv
2
Ak

2/(v2s + v2A),

Min(α2) = ω2(vs + vA)
2/(v2Av

2
s) at ω = const, k2 = ω2(v2s + v2A + vsvA)/(v

2
sv

2
A),

Min(α2) = k2 at k = const, ω2 = 0.

Thus, at constant k or ω the α2-values of the minima are larger than the values of the maxima.
At ω2 = v2sv

2
Ak

2/(v2s + v2A), α
2 diverges (see the application for ITER, Fig. 2).

The perturbation of the vector potential δ ~A between the plasma surface and the outer shell,
that means within the vacuum region, satisfies the vacuum wave equation. The perturbation of
the electric field within the vacuum equals δ ~E = −∂(δ ~A)/∂t, and the magnetic field perturbation

is δ ~B = ∇× (δ ~A).
Further, combining the equation of motion (27-29)) with the boundary condition for the

electromagnetic field at the plasma-vacuum interface (see [9]: eq. (15.3.3), the index i describes
the plasma region and the index e designates the vacuum region, B(i) = Bz, B

(e) = Bϕ)

~n×
[

δ ~E(i) + ~v(i) × ~B(i)
]

= ~n×
[

δ ~E(e) + ~v(e) × ~B(e)
]

, (38)

one finds the dispersion relation for the existing magnetohydrodynamic waves ω(k) under the
influence of a plasma boundary (see [9]: ∂/∂ϕ = 0 and Bz = const, eq. (15.5.14) without k2 in
the numerator of the second term on the right side)

ω2 =
Bi2

z k2

µoρo
−

Be2
ϕ

µoρoR2

αR∂Io(αR)/∂(αR)

Io(αR)
. (39)

R is the radius of the plasma-vacuum boundary. According to the dispersion relation (39), there
would be no plasma instability, but a normal Alfvén wave, in case that the outer azimuthal
magnetic field would vanish. That means, the plasma-vacuum interface determines the stability
of the plasma. The plasma may become unstable at sufficiently large values of κ = Be2

ϕ /Bi2
z .
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Figure 2. Function α2(ω2) for an ITER-type plasma.

5. ITER

Since 2005 in Caderache, France, the International Thermonuclear Experimental Reactor ITER
is under construction. It is a project of Europe, Japan, the former Soviet Union and the United
States, joint in 2003 by China and South Korea. ITER is a Tokamak-type reactor with a total
radius of 10.7 m and a height of 30 m.

ITER is designed to deliver a fusion power of 500 MW. It contains 18 superconducting toroidal
and 6 poloidal field coils. The strength of its toroidal magnetic field will be about 5.3 T (here
locally described by Bz). It can reach up to 11.8 T. A device volume of 840 m3 will contain a
plasma of 0.5 g at mean temperature of 2 · 108 K. Thus, in case of ITER, one has to consider a
plasma with a mass density of about ρ = 6 · 10−4 gm−3. The Alfvén and sound velocities of the
plasma amount to vA = 6 · 106 m/s and vs = 1.2 · 106 m/s, respectively.

Studying the possibility of magnetohydrodynamic instabilities of an ITER-type plasma, one
has first to determine the maximum and minimum values of the α-function (eq. (35)), as well as
the location of its divergency. In Fig. 2, α2 is presented for the ITER plasma as function of ω2.
It is to be seen, that the α2-value at small ω2 is also small, so that the argument of the Bessel
function Rα is smaller than one, and one may approximate Io(αR) by

Io(αR) ≈ 1 +
α2R2

4
,

∂Io(αR)

∂(αR)
=

αR

2
. (40)

Substituting eq. (40) for the Bessel function into eq. (39), one has

ω2 − k2v2A = −κv2A
α2

(2 + α2R2/2)
. (41)

Neglecting the α2R2 dependence on the right side of eq. (41) and expressing α2 by eq. (35), two
solutions of eq. (41) follow for ω2,

ω2
1 = k2v2A (42)

and

ω2
2 =

v2sv
2
Ak

2(2− κ)

2v2s + v2A(2− κ)
. (43)
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Figure 3. Dispersion relation of waves in an ITER-type plasma at different ratios of azimuthal
to axial magnetic field Bϕ/Bz. Solution for αR < 1. At ω2 < 0, the sausage instability is
excited.

The relation (42) describes a stable Alfvén wave. Equation (43) is the dispersion relation of an
additional wave which is unstable in the case of 2 ≤ κ < 2 + 2v2s/v

2
A. At κ = 2 + 2v2s/v

2
A, the

applied approximation eq. (40) is not valid anymore, ω2
2 - and thus also α2 - diverge. Further,

using the approximation of the Bessel function eq. (40), it follows from the dispersion relation
eq. (39) at ω2 = 0 (i.e. α2 = k2) that k2R2 = κ− 2. Thus, one obtains for αR < 1 that κ < 3.
Consequently, studying plasmas with κ ≥ 3, the formulae (40) cannot be used at frequencies
ω2 ≈ 0.

Results for ω2
2 are presented in Fig. 3 for the case of the ITER-type plasma. It is to be

seen that the strength of the instability grows monotonically with increasing κ at small wave
numbers k. Having found an instability for a given κ and a special wave number, the system is
obtained to be unstable for the κ at any wave number. But the wave numbers studied in Fig. 3
are not of real importance for ITER. They are too small. Nevertheless, the obtained results are
very helpful as limiting cases for numerical analyses, when the nonlinear dynamics of ITER-type
plasma instabilities at smaller wavelengths is studied.

Considering large αR > 1, the Bessel function may be approximated by Hankels expansion

Io(αR) ≈ exp(αR)√
2παR

(

1 +
1

8αR

)

. (44)

Therefrom follows
∂Io(αR)/∂(αR)

Io(αR)
≈ 8αR− 3

8αR+ 1
≈ 1 (45)

and one finds

ω2 =
2v2sv

2
Ak

2 + v4Ak
2 ±

√

β2 − 4βv4sk
2

2(v2s + v2A)
, β =

κ2v4A
R2

. (46)

As ω2 is real, one has k2 < β/(4v4s ). or k2 < 46κ2 under ITER-like conditions. From eq. (46)
follows for ω2 < 0 (sign minus), that the relation

k2 <
2κ2

R2(2 + χ)2

[

−1 +
√

1 + χ2 + χ3 + 0.25χ4

]

, χ =
v2A
v2s

. (47)
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Figure 4. Dispersion relation of waves in an ITER-type plasma at different ratios of azimuthal
to axial magnetic field Bϕ/Bz. Solution for αR > 1. At ω2 < 0, the sausage instability is
excited.

has to be satisfied. In case of the ITER plasma with vA > vs, eq. (47) may be approximated by

k2 <
κ2

R2
=

β

v4A
. (48)

Thus instabilities in ITER-type plasmas at αR > 1 should occur at wavelengths λ > 2πR/κ =
4π/κm. For κ = 2 (as studied before for αR < 1) unstable waves have much smaller wavelengths,
but they are larger than 6 m. And if κ increases, the wavelength will further decrease. In Figure
4, results of the numerical calculation of ω2 as function of the square of the wave number k2

are presented for different values of the parameter κ. To describe smaller wavelengths than
that considered in Fig. 3 for αR < 1, much larger k2-values are chosen. They correspond to
wavelengths of about 3 m. Results are only shown for ω2 < 0, as then also α2 > 0. Indeed for
the k2-interval studied, αR = 1 is satisfied at ω2 ≈ 1012 − 1015 s−2. For stable plasmas with
ω2 > 0, values of α2 below zero occur. From Figure 4 follows, that, in contradiction to the
case αR < 1, under the condition of αR > 1 instabilities may be obtained for all considered
κ-parameters, but they do not occur at any wave number k. The smaller the wave number the
stronger the instability. The transition from the stable to the unstable ITER-type plasmas at
large αR has to be described using Bessel functions of complex arguments. This will be done in
a future work.

6. Lightnings

In nature, pinches occur very often in connection with the appearance of lightnings. Here,
temperatures up to some 30000 K are found, and electrical currents are of the order of 40 kA
[10]. The lifetime of lightnigs amounts to 1 ms. The discharge radii with values of a few
centimeters are rather small. This results into magnetic fields of about 0.4 T and a magnetic
pressure of 0.6 atm (60795 Pa). Thus, at MHD pressure balance, the pinch pressure is about
1.6 atm (162120 Pa) and the pinch Alfvén speed has a value of 4000 m/s [10].

Concerning the plasma model considered in the present work, the ~Bz in the inner plasma core,
i.e. the hot lightning plasma, equals 0.4 nT. Of course, the hot lightning plasma is not surrounded
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by a vacuum, but by a plasma with much lower ionization intensity, which is here approximated
by a vacuum. The magnetic field of the surrounding plasma is the geomagnetic one with an
intensity of 5 · 10−5 T. In the Earth’s lower atmosphere, always an electrical field exists, which
is directed vertically to the Earth’s surface. It causes field-aligned electrical currents which may
generate azimuthal magnetic fields. It is known that thunderclouds mainly help to conserve
the vertical electrical field of the Earth’s atmosphere. But lightnings may be indeed directed
to the Earth or in the opposite direction, so they may increase or decrease the normal electric
field locally. In the Earth’s atmosphere also horizontal electric fields are observed. But these
fields are not taken into account in the present model. Besides, the gravitational acceleration is
neglected.

Figure 5. Dispersion relation of waves in an lightning plasma at different ratios of azimuthal
to axial magnetic field Bϕ/Bz . At ω

2 < 0, the sausage instability is excited.

For the above mentioned plasma parameters in a lightning, the dispersion equation (43) is
solved and the results are presented in Fig. 5 for the same κ-parameters and wave numbers k as
have been chosen for the ITER study at αR < 1 in section 5. It is to be seen, that again under
the condition κ > 2, the plasma becomes unstable. But the square of the frequencies of the
waves ω2 is about 6 orders of magnitude smaller than in the case of the ITER plasma. Besides,
ω2 increases more slowly with the wave number than in the ITER case. The parameter αR
of the Bessel function is smaller than unity in the considered plasma region. Thus, the radial
displacement of the plasma fluid in the lightning was found using eq. (37). The results are shown
in Fig. 6. One may conclude that the amplitudes of the radial plasma displacements grow with
increasing wave number k. In the studied plasma parameter region they have a maximum value
of 10 m.

7. Conclusions

The magnetohydrodynamic energy principle is presented for an internally homogeneous pinch
and applied to ITER-type and lightning systems. In doing so, a system of mathematical
equations of motion for fluid elements (eqs. (23-25)) is derived. The expressions are written
in a cylindrical coordinate system, but they may be also applied to plasmas with disturbances
of non-cylindrical symmetry. From the equations of motion, analytical formulae to be solved to
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Figure 6. Radial displacement in a lightning as function of the coordinate in direction of
the local axial magnetic field. The ratio of azimuthal to axial magnetic field equals κ = 1.8,
that means a sausage instability is excited. ω2 = −2.8 · 109 s−2. —— k2 = 200 m−1, · · · · · ·
k2 = 150 m−1, - - - - k2 = 100 m−1.

obtain the radial fluid displacements and the wave dispersion are presented, which describe the
excitation of magnetohydrodynamic waves, e.g. of sausage and kink ones.

To simplify the first numerical solutions presented in the present work, the obtained dispersion
relation is only solved for plasma disturbances with cylindrical symmetry and homogeneous
axial magnetic fields in the inner plasma core. Using the model of a pinch plasma separated
from the outer conducting wall by a vacuum, values of the ratio of the inner axial to the
external azimuthal magnetic fields are found, at which a sausage instability will occur. Numerical
solutions of the dispersion equation are presented for stable and unstable systems within the
limit of small values of αR, where α is a function of the wave frequency and wave number, and
R describes the radial dimension of the plasma system. In the case of ITER-type plasmas, small
αR correspond to rather large wavelengths in unstable systems. Thus, to describe more realistic
technical problems, the calculations were further extended to the region of αR > 1. Under such
conditions, in dependence on the wave number, unstable waves with wavelengths of the order of
2-3 m occur. But therefore the external azimuthal magnetic field at the outer wall has to be two
times stronger than the inner axial magnetic field. Thus the performed numerical analysis shows
the importance of the outer boundary conditions of a plasma for the excitation of instabilities
in the system. Besides, the results may help to chose such magnetic field ratios that sausage
instabilities will not appear in ITER-type plasmas.

Further, the model of the pinch plasma separated from the outer conducting wall by a vacuum
is applied to lightnigs in the Earth’s atmosphere. In this case, the mathematical approximations
made for αR < 1 are more appropriate, and it was possible to calculate the radial displacements
in the unstable plasma. But in cases of planetary atmospheres, the lightning plasma with the
larger degree of ionization is not bounded to a vacuum, but to other material with a lower degree
of ionization. Besides, at lightning altitudes particle collisions have to be taken into account in
the plasma model, which was not done here. Therefore, the magnetospheric energy principle has
to be further developed for weakly-collisional, partially ionized systems in future. Some steps
to determine instabilities in the Earth’s atmosphere taking also weak collisions between charged
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and neutral particles into account were already performed by the authors and presented in [11]
and [12] (misprints occur in eqs. (35-37) of [12], Fig. 2 of [12] is correct). There the MHD energy
principle was not used.

Last not least, consequences of an extended magnetospheric energy principle derived by A.
Miura [6], that means of a principle which one recently tries to apply for much larger scales than
the lightning ones in the Earth’s magnetosphere, are briefly reviewed in the present work.
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