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Abstract. We discuss an extension of Time dependent (TD) mean field theories such as
TD Hartree Fock (TDHF) or TD Kohn-Sham (TDKS) in order to include dissipative effects
as observed in many experimental situations. Applications to molecular problems are outlined.
We present in particular a 1D model allowing to test a promising approach to include dissipative
features in a quantum time dependent mean field. First results are presented in schematic cases.

1. Introduction

Mean field theory, and its time dependent (TD) extension, constitutes a sound starting basis for
the description of numerous dynamical situations in a variety of many-fermion systems ranging
from nuclei [1] to molecules and clusters [2]. Mean field theories in these systems have developed
to a high level of sophistication, in particular in its stationary version, but dynamical versions
thereof also attracted a lot of efforts especially for the description of low energy phenomena. In
the nuclear context the keyword is Hartree Fock (HF) and its time dependent extension TDHF.
Nuclear TDHF calculations have, to a large extent, been developed around effective density
dependent functionals, typically Skyrme interactions, since several decades and have reached
a high level of sophistication [3]. In clusters and molecules the underlying effective theory is
Density Functional Theory (DFT) [4] and its Time Dependent extension TDDFT. The simplest
mean field approximation thereof is known as Local Density Approximation (LDA and TDLDA),
which again relies on a density dependent effective Hamiltonian [4]. Both nuclear TDHF and
electronic TDLDA are thus using single particle density as a key input and thus bear strong
formal resemblances, which actually reflect physical similarities in several observables [5]. One
can mention as a typical example collective motion, in particular the Giant Dipole Resonance in
nuclei [1] and its counterpart the Mie plasmon (or more generally speaking the optical response)
in metal clusters [2].

Mean field theory constitutes a robust and sound basis for the description of many dynamical
situations, but it fails to properly address dynamics beyond the linear regime, because it does
not include dynamical correlations. Typical situations requiring such extensions are heavy-ion
collisions in the Fermi energy range [6] or irradiation of clusters and molecules by intense laser
fields [7, 8]. In spite of long standing efforts [9], the inclusion of dissipative effects via dynamical
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correlations in a quantum mean field theory remains to a large extent an open issue. Several
semi-classical approximations were developed, especially in the nuclear case over the last decades
[10, 5], and more recently in the case of clusters [11]. However these latter approaches are limited
to cases where a (semi) classical approximation is justified, or, in other words, to situations in
which quantum shell effects can be safely neglected, typically when excitation energies are large
enough, which excludes numerous physically relevant situations. Although not fully satisfying
from the formal point of view, and in spite of some failures, the use of such semi classical
approximations is probably acceptable in the case of heavy ion collisions in the Fermi energy
domain [6, 5]. The situation is quite different for most molecular situations where quantum
shell effects may play a leading role. The interest in these systems has been recently renewed
following the accumulation of experimental evidence via imagining techniques, in particular in
the case of irradiation of clusters and molecules by intense laser beams [8]. There is thus a
recent renewed interest in this question of including dynamical correlations in quantum mean
field, especially in the TDDFT community [12].

In the following, we propose a stochastic extension of TDHF/TDLDA which should allow to
envision on short term the inclusion of dissipative effects in a quantum mechanical framework,
and applications to realistic test cases both in the nuclear and the molecular contexts. After
a brief reminder of the original theory, we outline a simpler form allowing test cases in model
systems and outline the next steps to be performed along that line.

2. Theoretical framework

The formal starting point is Stochastic Time-Dependent Hartree-Fock (STDHF) originally
formulated in nuclear dynamics [13], but which can be used in any systems where mean-field
theory provides a sound description of low energy phenomena, as outlined above. STDHF
proposes a description of dynamical correlations in terms of a stochastic ensemble of TDHF
(mean-field) states. Originally, STDHF was formulated in terms of density matrices on the
basis of the quantum Liouville equation [13]. STDHF can be reduced to a quantum kinetic
equation (even accounting for fluctuations) and thus contains all ingredients for describing the
path to thermalization and the thermal fluctuations around, as discussed in [13, 14]. But it has
never been turned into a practical scheme. The aim of this paper is to propose a reformulation of
STDHF, reducing correlations to 2 particles-2 holes (2ph) excitations, which allows a practical
implementation of STDHF at acceptable expense, as will be illustrated on one example.

The basic idea of STDHF is to build correlations perturbatively around TDHF/TDLDA
trajectories. Starting from an initial time t0 = 0 we expand the time dependent correlated state
|ψ(t)〉 into n-particle-n-hole (nph) excitations around the underlying Slater state |Φ〉 :

|ψ(t)〉 = |Φ〉+
∑

pp′hh′

cpp′hh′ â†pâ
†
p′ âh′ âh|Φ〉+ ... (1)

where all ingredients on r.h.s. (|Φ〉, â†p, âh, c) depend explicitly on time t. The nph basis has the
great advantage that all states in the expansion (1) are ortho-normalized. The first non vanishing
term of the expansion is the 2ph excitation around mean field, as the 1ph excitation is already
included in the TDHF propagation. Assuming that the 2ph excitations indeed correspond to
the leading contribution we truncate the expansion to this first (2ph) term. There remains
to compute the 2ph expansion coefficients cpp′hh′ which account for the dynamical correlations
beyond the mean field state built up during time evolution.

To that end, we consider not too large time intervals τ so that we can describe the built-up
of correlations in time dependent perturbation theory. Following standard steps of derivation
we finally obtain transition probabilities in terms of Fermi Golden rule as

|cpp′hh′(τ)|2 ≃ τδ(εp′ + εp − εh′ − εh)|〈Φpp′hh′ |V̂ (τ)|Φ〉|2 (2)
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where |Φpp′hh′〉 denotes one particular 2ph excitation on top of |Φ〉. The single particle (sp)

energies εj are taken here as the expectation values εj = 〈ϕj(t)|ĥ(t)|ϕj(t)〉 where ĥ(t) is the
instantaneous mean field associated to state |Φ〉.

Equation (2) can be read as the probability of transition from the state |Φ〉 to the 2ph state

|Φpp′hh′〉 due to the residual interaction V̂ not accounted for in the mean field. In fact, it is the
probability accumulated during an interval τ of propagation. The δ function plays the role of a
energy selection rule, where only 2ph-transitions fulfilling (up to some small uncertainty) energy
conservation are allowed, and give nonzero transition probabilities.

Practically speaking we propagate an ensemble of Slater states according to TDHF/TDLDA
and occasionally (every τ) evaluate jump probabilities. At each time jump probabilities are
evaluated we sample the thus computed jump probabilities and choose a new state of the system
according to the sampling (namely a 2ph excited state) or keep the actual state, depending on
the probability sampling. The process is repeated in time for each member of the ensemble and
this produces one realization of STDHF (one event). The whole procedure is then repeated for
each member of the ensemble thus producing an ensemble of STDHF events, the ensemble itself
representing the correlated evolution of the system. The ensemble then provides the necessary
content to compute relevant observables as is illustrated below.

3. Results

For simplicity, we work on a 1D dimensional system mocking up the scales of a typical molecular
system (actually close to metallic). The associated mean field Hamiltonian in x representation
is given by

ĥN = −
∆

2m
+ Vconf(x) + κρ(x)α (3)

where κ and α are parameters parametrizing the consistent component of the mean field (here we
have chosen κ = 3 and α = 1). The confining potential Vconf is chosen harmonic with frequency
~w = 0.06Ry which delivers a rather dense spectrum with a large density of states thus a priori
allowing numerous 2ph transitions even in a 1D system. We choose as residual interaction for
two-body collisions a simple zero-range force

VN (x, x′) = δ(x− x′)V0 . (4)

with V0 = 3Ry and reflecting boundary conditions. Starting from the ground state of the system
we inject excitation energy E∗ at initial time by applying some multi particle-hole excitation.
The thus deposited excitation energy serves as seed for the branching of dynamical correlations
which are evaluated each τ = 0.5fs. We checked, by varying τ from half to double value, that the
detailed choice of τ has minor effect. We propagate simultaneously 10 occupied wave functions
(which constitute the actual Slater states) and 17 empty states which provide the reservoir for
evaluating 2ph transitions. The examples presented below gather about 50 events.

As an illustrative example of how STDHF events do evolve in time we plot in Figure 1
the time evolution of single particle energies following an initial 3ph excitation delivering an
excitation energy of a bit less than 2 Ry. The figure nicely shows how 2ph transitions do occur
in the course of time. Of course, the figure is only illustrative to the extent that other events
will deliver another sequence of 2ph transitions. But on the average the total number of 2ph
transitions is a rather robust quantity (at least for such an excitation energy) and only varies
little form one event to the next. The dense spectrum in that case allows a sizable number of
such transitions and thus ensures an efficient dissipative scenario.

A key quantity to analyze dissipation and mixing are occupation numbers. This quantity can
be evaluated from the ensemble of STDHF events via the one body density matrix ρ̂ constructed
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Figure 1: Time evolution of sp energies for one particular event. The excitation energy is 1.6
Ry in that case.

as the average of the one body density matrice of each event ρ̂i as :

ρ̂ =
1

N

N∑

i=1

ρ̂i (5)

where N is the total number of events. The one body density matrix for a given event i is
obtained by summing over the occupied states as

ρ̂i(x, x
′) =

N∑

α=1

ϕ∗
α(x

′)ϕα(x) (6)

where N represents the total number of occupied states. The density matrix (5), thus
constructed, is then diagonalized and its eigenvalues provide the occupation numbers n(ε) which
can be plotted as a function of time to analyze the path to thermalization.

The time evolution of occupation numbers is illustrated in Figure 2 in the case of an initial
3ph excitation delivering E∗ = 1.6 Ry. In the early times the figure nicely exhibits traces of
the initial excitation with spiky structures. These structures are progressively smoothed as a
consequence of the relaxation process. The asymptotic state finally exhibits a smooth profile
resembling a Fermi distribution

n(ε) =
1

exp(
ε− εF

kBT
) + 1

(7)

which signals a thermal equilibrium state. We have fitted the distribution finally reached in the
STDHF propagation to the equilibrium profile (7), see figure 3. The agreement is satisfying in
view of the small system under consideration. The fit allows to extract a temperature. In that
it is kBT =∼ 0.17Ry, which represents a significant fraction of the actual Fermi energy when
measured from bottom of the potential well. We thus have clearly reached a thermal state.
This statement can be corroborated by looking at the time evolution of the sp entropy (not
shown here). It is found that the entropy increases steadily and levels of asymptotically with
an exponential convergence rate.
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Figure 2: Snapshots of occupation numbers n(ε) as a function of sp energy ε at selected times
for 1.6 Ry excitation energy.
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Figure 3: Fit of the final distribution of the example in figure 2, see red line, to a Fermi
distribution (7), see blue line.

4. Conclusions and perspectives

We have introduced a stochastic approach to include dissipation (and fluctuations) on top
of time dependent mean field theories. This approach treats correlations in time dependent
perturbation theory on short time. Dynamical correlations are then sampled to provide an
ensemble description of the dynamics, in terms of pure mean field states. We have illustrated
this approach on a simple 1D model mocking up typical molecular situations. The first results
obtained in this framework show that the adopted strategy is very promising. In spite of the 1D
restriction the density of states is large enough to allow a significant number of 2ph transitions
which are at the source of our dissipative mechanism. The system is excited at initial time by
a random multi ph excitation which immediately deposits a (possibly large) excitation energy.
The correlated one body density matrix obtained as the ensemble average of pure mean field
density matrices displays the expected features of a system driven towards thermal equilibrium
as expected in the cases explored in this study. This exploratory case raises a large number
of questions. They concern for example analysis tools to be further developed in particular
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single particle entropy and associated relaxation times towards equilibrium, correlated two body
density matrix..., to mention a few. It also concerns some technical issues on the preservation of
conservation laws (total energy, centre of mass...) which are presently only preserved in average.
They also concern formal developments to be performed in particular a reformulation of the
theory in terms of mixed states to allow the treatment of low energy cases where the stochastic
sampling reaches its limits in terms of statistics. These various aspects are presently being
considered.
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