
A frustrated spin-1 J1–J2 Heisenberg antiferromagnet:

An anisotropic planar pyrochlore model

P H Y Li1, R F Bishop1, and C E Campbell2

1 School of Physics and Astronomy, Schuster Building, The University of Manchester,
Manchester, M13 9PL, UK
2 School of Physics and Astronomy, University of Minnesota, 116 Church Street SE,
Minneapolis, Minnesota 55455, USA

E-mail: raymond.bishop@manchester.ac.uk; peggyhyli@gmail.com

Abstract. The zero-temperature ground-state (GS) properties and phase diagram of a
frustrated spin-1 J1–J2 Heisenberg model on the checkerboard square lattice are studied, using
the coupled cluster method. We consider the case where the nearest-neighbour exchange bonds
have strength J1 > 0 and the next-nearest-neighbour exchange bonds present (viz., in the
checkerboard pattern of the planar pyrochlore) have strength J2 ≡ κJ1 > 0. We find significant
differences from both the spin-1/2 and classical versions of the model. We find that the spin-1
model has a first phase transition at κc1 ≈ 1.00 ± 0.01 (as does the classical model at κcl = 1)
between two antiferromagnetic phases, viz., a quasiclassical Néel phase (for κ < κc1) and one of
the infinitely degenerate family of quasiclassical phases (for κ > κc1) that exists in the classical
model for κ > κcl, which is now chosen by the order by disorder mechanism as (probably) the
“doubled Néel” (or Néel∗) state. By contrast, none of this family survives quantum fluctuations
to form a stable GS phase in the spin-1/2 case. We also find evidence for a second quantum
critical point at κc2 ≈ 2.0 ± 0.5 in the spin-1 model, such that for κ > κc2 the quasiclassical
(Néel∗) ordering melts and a nonclassical phase appears, which, on the basis of preliminary
evidence, appears unlikely to have crossed-dimer valence-bond crystalline (CDVBC) ordering,
as in the spin-1/2 case. Unlike in the spin-1/2 case, where the Néel and CDVBC phases are
separated by a phase with plaquette valence-bond crystalline (PVBC) ordering, we find very
preliminary evidence for such a PVBC state in the spin-1 model for all κ > κc2 .

1. Introduction
Low-dimensional spin-lattice models of magnetic systems, particularly those pertaining to
frustrated Heisenberg antiferromagnets (HAFMs) with competing interactions, have been
extensively studied from both the theoretical and experimental viewpoints in recent years.
Although such spin-lattice models are themselves conceptually simple and easy to write down,
these strongly correlated systems often exhibit rich and interesting zero-temperature (T = 0)
ground-state (GS) phase diagrams as the interaction coupling strengths are varied, due to the
strong interplay between quantum fluctuations and frustration. The strength of the quantum
fluctuations can itself also be tuned by a variety of methods. These include changing the spin
quantum number s of the particles residing on the given lattice sites, while keeping the interaction
Hamiltonian unchanged. One expects that, in general, quantum fluctuations will be greatest for
the case s = 1

2 , and that they will reduce to zero as the classical limit (s→∞) is approached.
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For this reason the greatest attention has been paid to spin-1/2 magnets. Nevertheless, there
has also been an upsurge of interest in spin-1 magnets in recent years. On the theoretical side,
although quantum fluctuations will generally be reduced for a given model for the case s = 1
compared with its counterpart for the case s = 1

2 , totally new physical effects can also sometimes
enter. In one-dimensional (1D) systems these include the by now well-known existence of the
gapped Haldane phase [1] with an exponential decay with separation of spin-spin correlations
for s = 1 (or, more generally, for integral values of s), compared to the gapless phase with
a corresponding power-law decay of spin-spin correlations for s = 1

2 (or, more generally, for
half-odd-integral values of s). Also, in any number of dimensions, the possible inclusion in the
s = 1 case of such additional terms in the Hamiltonian as biquadratic exchange and single-site
anisotropy, which are absent for s = 1

2 systems, can lead both to novel quantum phase transitions
and to novel phases with, for example, quadrupolar nematic long-range order (LRO) but with
zero magnetic order parameter (taken as the average local on-site magnetization).

On the experimental side many magnetic compounds containing spin-1 ions are now
established as being well described by various s = 1 spin-lattice models. For the 1D case
there are many good experimental realizations of (quasi-)linear chain systems with s = 1. These
include CsNiCl3 [2] and Y2BaNiO5 [3], both with a weak easy-axis single-ion anisotropy, and
CsFeBr3 [4] with a strong easy-plane single-ion anisotropy, as well as such complex organo-
metallic compounds as NENP (Ni(C2H8N2)2(NO2)(ClO4)) [5] with a weak planar anisotropy,
and both NENC (Ni(C2H8N2)2Ni(CN4)) [6] and DTN (NiCl2-4SC(NH2)2) [7] with a strong
planar anisotropy. The spin gaps seen in CsNiCl3, Y2BaNiO5 and NENP are now believed to
be experimental realizations of the integer-spin gap behaviour predicted by Haldane [1]. For the
two-dimensional (2D) case several experimental realizations of spin-1 antiferromagnets exist.
For example, K2NiF4 [8] provides a realization of an s = 1 HAFM on a square lattice. Similarly,
NiGa2S4 [9] is well described as a 2D antiferromagnet on a triangular lattice, for which the GS
phase has been argued to have ferro-spin nematic order [10–12].

Of particular relevance to the present study has been the large additional impetus to the
study of 2D spin-1 antiferromagnets that was provided by the discovery of superconductivity
with a transition temperature Tc ≈ 26 K in the layered iron-based compound LaOFeAs, when
doped by partial substitution of the oxygen atoms by fluorine atoms [13], La[O1−xFx]FeAs, with
x ≈ 5–11%. That discovery was rapidly followed by finding superconductivity at even higher
transition temperatures (Tc & 50 K) in a wide class of similarly doped quaternary oxypnictide
materials. First-principles calculations [14] ensued, which showed that the original undoped
parent precursor material LaOFeAs is well described by the spin-1 J1–J2 HAFM on a square
lattice with nearest-neighbour (NN) and next-nearest-neighbour (NNN) Heisenberg exchange
couplings, J1 and J2 respectively, with J1 > 0, J2 > 0, and with J2/J1 ≈ 2. Other authors have
also reached similar conclusions (see, e.g., Ref. [15]).

The J1–J2 model on a square lattice has itself received huge theoretical attention over the last
25 or so years, since it provides an archetypal model of a strongly correlated and highly frustrated
spin-lattice system. Most attention has naturally been devoted to the spin-1/2 case (see, e.g.,
Refs. [16–48] and references therein). The consensual view for this model now is that its (T = 0)
GS phase diagram exhibits two phases with quasiclassical LRO, both with antiferromagnetic
(AFM) order, namely, a Néel-ordered phase (with a wavevector Q = (π, π)) at small values of
the frustration parameter (J2/J1 . 0.4) and a collinear stripe-ordered phase (with a wavevector
Q = (π, 0) or Q = (0, π)) at large values (J2/J1 & 0.6). These two magnetically ordered phases
are separated by an intermediate quantum paramagnetic (QP) phase without magnetic LRO
for 0.4 . J2/J1 . 0.6. What makes the system of continuing interest is that the nature of the
intermediate QP phase and the order and nature of the two phase transitions bounding it are
still not fully resolved and understood.

The classical (s → ∞) version of the J1–J2 model on the square lattice (with a number
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N → ∞ of spins) exhibits a unique GS Néel-ordered AFM phase for J2/J1 < 1
2 , with an

energy per spin Ecl/N = −2s2(J1 − J2), but has an infinitely degenerate set of GS phases for
J2/J1 >

1
2 , all with Ecl/N = −2s2J2. The latter set comprises two interpenetrating Néel-ordered√

2 ×
√

2 square lattices, with the relative ordering angle between them completely arbitrary.
Quantum fluctuations then act, via the well known order by disorder mechanism [49,50], to lift
this (accidental) degeneracy in the quasiclassical (s� 1) limit where one works to leading order
in 1/s, in favour of collinear ordering, which leads to the two (row or column) stripe-ordered
states, with wavevectors Q = (0, π) and Q = (π, 0), discussed above.

This feature of macroscopic classical GS degeneracy in any spin-lattice model always makes
such models of particular theoretical interest since they are, a priori, prime candidates for
exhibiting novel quantum GS phases. It also makes them particularly susceptible to small
perturbations in the form, for example, of additional spin-orbit interactions, spin-lattice
couplings, neglected exchange terms, and anisotropies in the exchange interactions. Hence,
considerable attention has also been placed on various such mechanisms, or extra parameters
that can be included, to extend the J1–J2 model on the square lattice, apart from changing the
spin quantum number, both to learn more about the model itself and to enquire how robust are
its various properties against any such perturbations.

Naturally, for the purpose of making such detailed comparisons, it is important to use an
accurate theoretical technique with controlled approximation hierarchies. One such is the
coupled cluster method (CCM) [51–54] that we shall employ here, and which we discuss in
more detail in Sec. 3. The CCM has been very successfully applied over the last 20 or more
years to a wide variety of quantum spin-lattice systems (see, e.g., Refs. [28, 37, 38, 41, 43, 53–88]
and references cited therein). These include applications both to the square-lattice J1–J2 model
itself [28,38,43,73] as well as to various extensions and refinements of it along the lines discussed
above.

Such extensions include, inter alia: (a) the J1–J2–J⊥ model of a stacked square lattice [37],
in which a number of 2D J1–J2 square-lattice layers are coupled via a NN inter-layer exchange
interaction of strength J⊥; (b) putting a square-plaquette structure on the model [43] by having
differing inter- and intra-plaquette NN couplings; (c) the corresponding J1–J2–J3 model [41],
which includes next-next-nearest-neighbour Heisenberg couplings of strength J3; (d) the J1–J

′
1–

J2 model [68], in which a spatial anisotropy between NN bonds along the two perpendicular
square-lattice directions is introduced; and (e) the JXXZ1 –JXXZ2 model [67], in which an XXZ-
type anisotropy is introduced on both the NN and NNN Heisenberg exchange bonds. The
corresponding s = 1 cases have also been studied within the CCM framework for the latter two
cases of the J1–J

′
1–J2 model [69] and the JXXZ1 –JXXZ2 model [70] on the square lattice.

Of particular importance for, and relevance to, the present paper, we note that the CCM has
also been applied to study the (T = 0) GS phase diagrams of several members of the so-called
half-depleted spin-1/2 J1–J2 models on the square lattice, all of which share the feature that
half of the J2 bonds of the original model are removed. They differ only in the arrangements
of the remaining J2 bonds. When each basic square plaquette (formed from 4 NN J1 bonds)
has a single J2 bond, they include the three cases of: (a) the interpolating square-triangle
model [72], in which the J2 bonds have the same orientation in each square plaquette; (b) the
Union Jack model [74], in which the J2 bonds have alternating orientations on neighbouring
square plaquettes; and (c) the chevron-decorated square-lattice model [87], in which the J2
bonds alternate in orientation in one direction (say, along rows), but are parallel to each other
in the perpendicular direction (say, along columns).

The corresponding s = 1
2 model on the checkerboard lattice, in which alternating basic square

plaquettes have either both or zero J2 bonds present, has also been studied within the CCM [83].
Furthermore, CCM studies have also been carried out for s ≥ 1 cases of both the interpolating
square-triangle lattice model [79] and the Union Jack model [76], which both show interesting
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(a) Néel (b) Néel∗

Figure 1. The J1–J2 checkerboard model, showing (a) the Néel state, and (b) one of the two
Néel∗ states. The NN J1 bonds are shown as solid (black) lines and the NNN (i.e., also NN) J2
bonds are shown as dashed (magenta) lines. The arrows represent the orientations of the spins
on each lattice site for each of the three states shown.

differences to their s = 1
2 counterparts. The aim of the present work is to perform a similar CCM

analysis of the s = 1 version of the J1–J2 model on the checkerboard lattice, and to compare it
with its s = 1

2 counterpart studied previously by us [83].
The J1–J2 model on the checkerboard lattice, shown schematically in Fig. 1, is also known as

the anisotropic planar pyrochlore (APP) model (or, sometimes, the crossed chain model). It may
be regarded as a 2D analogue of a three-dimensional (3D) anisotropic pyrochlore model of corner-
sharing tetrahedra. The model itself, as we elaborate in Sec. 2, falls into the same interesting
class as the full J1–J2 model on the square lattice, demonstrating macroscopic classical GS
degeneracy above a certain critical value of the anisotropy parameter, κ ≡ J2/J1. For that
reason the (T = 0) GS phase diagram of the s = 1

2 version of the model has been much studied
earlier by many authors [83, 89–106]. More recently, on the basis of our CCM results for this
model [83], a more accurate and, hopefully, more consensual description of its GS phase structure
is emerging. The time now seems ripe, therefore, to compare and contrast the model with its
s = 1 counterpart, which we study here.

In Sec. 2 the model itself is discussed, before we give a brief description of the CCM formalism
in Sec. 3. Our main results are then presented in Sec. 4, and we end with a discussion and
summary in Sec. 5.

2. The model
The Hamiltonian of the J1–J2 model on the checkerboard lattice is given by

H = J1
∑
〈i,j〉

si · sj + J2
∑
〈〈i,k〉〉′

si · sk , (1)

where the indices runs over all sites of a 2D square lattice, such that the sum over 〈i, j〉 counts
every NN pair (once and once only) and the sum over 〈〈i, k〉〉′ counts each NNN pair in the
checkerboard pattern (once and once only) shown in Fig. 1, such that alternate basic square
plaquettes have either two diagonal bonds or none. Each site i of the lattice now carries a
particle with spin s = 1 described by a spin operator si = (sxi , s

y
i , s

z
i ).

The lattice and exchange bonds of the anisotropic planar pyrochlore model are thus shown in
Fig. 1, from which one sees clearly how it may alternatively be construed as comprising crossed
(diagonal) sets of chains, along which the intrachain exchange coupling constant is J2, coupled
by both vertical and horizontal interchain exchange bonds of strength J1. Both bonds here
are assumed to be AFM in nature (i.e., J1 > 0 and J2 > 0) and hence to act to frustrate one
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another. Clearly, the model interpolates smoothly between the HAFM on the square lattice
(when κ ≡ J2/J1 = 0) and decoupled 1D isotropic HAFM chains (when κ→∞). When κ = 1,
in between these limiting cases, we have the isotropic HAFM on the checkerboard lattice, alias
the isotropic planar pyrochlore. With no loss of generality, henceforth we choose J1 ≡ 1 to set
the overall energy scale.

Classically (i.e., when s → ∞) the model has a single (T = 0) GS phase transition at
κ = κcl = 1. For κ < 1 the GS phase is the Néel state illustrated in Fig. 1(a), for which the
ordering along the diagonal chains is hence ferromagnetic (FM) in nature. The GS energy per
spin of this classical Néel state is thus Ecl/N = s2(−2J1 + J2). For κ > 1 the corresponding
GS phase is now infinitely degenerate. It comprises a set of collinear states in which every
checkerboard diagonal chain of sites connected by J2 bonds has Néel AFM ordering, but
where each chain can slide along its own length without changing the overall energy. In
other words, the infinite degeneracy in this set is such that the spins along any one row or
column can be arbitrarily assigned. All such states then have the same classical energy per spin,
Ecl/N = −s2J2, independent of the value of J1. Among this infinite family of states is the
so-called Néel∗ state shown in Fig. 1(b), which has pairwise or doubled AFM ordering of the
type · · · ↑↑↓↓↑↑↓↓ · · · , along every row and column. Thus, the single spin ↑ or ↓ of the Néel state
is replaced by the two-site unit ↑↑ or ↓↓ in the Néel∗ state. The Néel∗ state retains a double
degeneracy. This can easily be seen, for example, from Fig. 1(b), where the Néel∗ state exhibits
two forms of empty plaquettes (namely, those with four parallel spins and those with two pairs
of antiparallel spins), the roles of which can be interchanged.

In our previous [83] CCM analysis of the s = 1
2 version of the model we found a GS

phase diagram with marked differences to its classical (s → ∞) counterpart. Although the
quasiclassical state with Néel AFM ordering remains the GS phase for low enough values of
κ (viz., κ < κ1c ≈ 0.80 ± 0.01), we found that none of the infinitely degenerate set of AFM
states in the classical model (which form the GS phase in that case for κ > 1) can survive
the quantum fluctuations present in the s = 1

2 case to form a stable GS phase. We found
instead two different forms of valence-bond crystalline (VBC) ordering for κ > κ1c . Firstly, in
the region κ1c < κ < κ2c ≈ 1.22 ± 0.02 we found the stable GS phase to exhibit plaquette VBC
(PVBC) order, while for all κ > κ2c the ordering changes to a crossed-dimer VBC (CDVBC)
variety. We found that both transitions are probably direct ones, although, as usual, we could
not entirely rule out very narrow coexistence regions confined, respectively, to 0.79 . κ . 0.81
and 1.20 . κ . 1.22.

In view of our earlier discussion in Sec. 1, it is now of great interest to perform a comparable
analysis of the s = 1 version of the model, the results of which we present in Sec. 4 after a brief
discussion of the CCM formalism used to obtain them.

3. The coupled cluster method
Since the CCM is well documented elsewhere (see, e.g., Refs. [51–54]) we give only a brief outline
here. We note that it is particularly well suited for the study of such highly frustrated magnets
as we consider here, for which alternative methods, such as quantum Monte Carlo (QMC) or
exact diagonalization (ED) techniques, run into severe problems. Thus, QMC methods suffer
in such cases from the infamous “minus-sign problem,” while ED methods are often restricted
to too small lattices to be able to sample with sufficient accuracy the details of the often very
subtle ordering that is present, even when state-of-the-art calculations are performed with the
largest computational resources available. While both QMC and ED calculations are performed
on lattices with a finite number N of spins, and hence require finite-size scaling to obtain
the N → ∞ limit required, the CCM, as we described below, is a size-extensive method that
automatically works in the (infinite-lattice) thermodynamic limit from the outset, at every
level of approximation. Since such approximations, as we will see below, can be defined in
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rigorous hierarchical schemes, the only final extrapolation needed is to the (exact) limit in
any such scheme. Furthermore, at the highest levels of approximation feasible with available
computational resources, results for physical quantities are often already well converged, as our
specific results in Sec. 4 will show.

The CCM starts with the choice of a suitable model state (or reference state), |Φ〉, on top of
which the quantum correlations present in the exact GS phase under study can be systematically
incorporated later, as we described below. For the present model obvious choices are the Néel
and Néel∗ states shown in Fig. 1. At the quasiclassical level we expect these might prove good
candidate CCM model states for the regions κ . 1 and κ & 1, respectively. Of course, for the
latter regime there is an infinite family of classically degenerate states from which to choose. We
note, in this context, however, that at the O(1/s) level in a quasiclassical expansion in powers
of 1/s, a fourfold set of states is selected [97] by the order by disorder mechanism [49, 50] to lie
lowest in energy. These include the (doubly degenerate) Néel∗ states as well as the two (row
and column) striped AFM states, in which alternating rows or columns have spins aligned ↑ or
↓.

Once a model state |Φ〉 is chosen, the exact GS ket- and bra-state wave functions that satisfy
the corresponding Schrödinger equations,

H|Ψ〉 = E|Ψ〉 ; 〈Ψ̃|H = E〈Ψ̃| , (2)

are parametrized as
|Ψ〉 = eS |Φ〉 ; 〈Ψ̃| = 〈Φ|S̃e−S , (3)

where we use the intermediate normalization scheme for |Ψ〉, such that 〈Φ|Ψ〉 = 〈Φ|Φ〉 ≡ 1,
and then for 〈Ψ̃| choose its normalization such that 〈Ψ̃|Ψ〉 = 1. The correlation operators S
and S̃ are decomposed in terms of exact sets of multiparticle, multiconfigurational creation and
destruction operators, C+

I and C−I ≡ (C+
I )†, respectively, as

S =
∑
I 6=0

SIC+
I ; S̃ = 1 +

∑
I 6=0

S̃IC−I , (4)

where C+
0 ≡ 1, the identity operator, and I is a set index describing a complete set of single-

particle configurations for all of the particles. The reference state |Φ〉 thus acts as a fiducial (or
cyclic) vector, or generalized vacuum state, with respect to the complete set of creation operators
{C+

I }, which are hence required to satisfy the conditions 〈Φ|C+
I = 0 = C−I |Φ〉 ,∀I 6= 0.

In order to consider each site on the spin lattice to be equivalent to all others, whatever
the choice of state |Φ〉, it is convenient to form a passive rotation of each spin so that in its
own local spin-coordinate frame it points in the downward, (i.e., negative z) direction. Clearly,
such choices of local spin-coordinate frames leave the basic SU(2) spin commutation relations
unchanged, but have the nice effect that the C+

I operators can be expressed as products of
single-spin raising operators s+k ≡ s

x
k + isyk, such that C+

I ≡ s
+
k1
s+k2 · · · s

+
kn

; n = 1, 2, · · · , 2sN .

The complete set of multiparticle correlation coefficients {SI , S̃I} may now be evaluated by
extremizing the energy expectation value H̄ ≡ 〈Ψ̃|H|Ψ〉 = 〈Φ|S̃e−SHeS |Φ〉, with respect to each
of them, ∀I 6= 0. Variation with respect to each coefficient S̃I yields the coupled set of nonlinear
equations,

〈Φ|C−I e−SHeS |Φ〉 = 0 , ∀I 6= 0 , (5)

for the coefficients {SI}, while variation with respect to each coefficient SI yields the
corresponding set of linear equations,

〈Φ|S̃(e−SHeS − E)C+
I |Φ〉 = 0 , ∀I 6= 0 , (6)
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for the coefficients {S̃I}, once the coefficients {SI} have been calculated from Eq. (5), and where
in Eq. (6) we have used Eqs. (3) and (4) to introduce the GS energy E.

Up till now everything has been exact. In practice, of course, approximations need to be
made, and these are made within the CCM by restricting the set of indices {I} retained in the
expansions of Eq. (4) for the otherwise exact correlation operators S and S̃. Some specific such
hierarchical scheme are described below. It is important to realize, however, that no further
approximations are made. In particular, the method is guaranteed by the use of the exponential
parametrizations in Eq. (3) to be size-extensive at every level of truncation, and hence we work
from the outset in the N → ∞ limit. Similarly, the important Hellmann-Feynman theorem is
similarly exactly obeyed at every level of truncation. Lastly, when the similarity-transformed
Hamiltonian e−SHeS in Eqs. (5) and (6) is expanded in powers of S using the well-known
nested commutator expansion, the fact that S contains only spin-raising operators guarantees
that the otherwise infinite expansion actually terminates at a finite order, so that no further
approximations are needed.

Once an approximation has been chosen and the retained coefficients {SI , S̃I} calculated
from Eqs. (5) and (6), any GS quantity can, in principle, be calculated. For example, the GS
energy E can be calculated in terms of the coefficients {SI} alone, as E = 〈Φ|e−SHeS |Φ〉, while
the average on-site GS magnetization (or magnetic order parameter) M needs both sets {SI}
and {S̃I} for its evaluation as M = − 1

N 〈Φ|S̃e−S
∑N

k=1 s
z
ke
S |Φ〉, in terms of the rotated local

spin-coordinate frames defined above.
In our previous work for the s = 1

2 model [83] we employed the well-known and well-
tested localized LSUBm CCM approximation scheme (see Refs. [53, 54]). At the mth level
of approximation it includes all spin clusters described by multispin configurations in the index
set {I} that may be defined over any possible lattice animal (or polyomino) of size m on the
lattice. Such a lattice animal is defined in the usual graph-theoretic sense to be a configured
set of contiguous sites on the lattice, in which every site in the configuration is adjacent (in
the NN sense) to at least one other site. Clearly, as m → ∞ the LSUBm approximation
becomes exact. The definition of contiguity employed above depends itself on the choice of
“geometry” of the lattice, i.e., on the definition of what is meant by a NN pair. Just as in
our previous treatment [83] of the s = 1

2 version of the present s = 1 model, we assume the
fundamental checkerboard geometry to define the retained configurations, in which pairs of
sites connected either by a J1 bond or by a J2 bond are defined to be contiguous (or as NN
pairs for the sake of defining a lattice animal of a given size). Although the number of retained
configurations at a given mth level of approximation is larger in the checkerboard geometry than
in the corresponding square-lattice geometry (for which pairs connected by J2 bonds would be
NNN pairs), the advantage is that the former choice retains many of the symmetries of the
checkerboard-lattice model at all levels of approximation that would be lost in the latter choice.

At a given mth level of LSUBm approximation (with any fixed choice of underlying geometry
to define contiguity) the number, Nf , of such distinct (i.e., under the symmetries of the lattice
and specified model state) fundamental spin configurations is lowest for s = 1

2 and rises steeply
as s increases. This is because each downward-pointing (in the rotated local frame) spin on each
site k may be operated upon by the spin-raising operator s+k up to 2s times. Thus each site
index ki in the operators C+

I ≡ s
+
k1
s+k2 · · · s

+
kn

may be repeated up to a maximum of 2s times. For

such s > 1
2 cases, where individual indices may be repeated, an alternative, so-called SUBn–m,

CCM scheme has been used. This scheme doubly restricts the configured clusters included to
contain no more than n spin-flips (where each spin-flip requires the action of an s+k operator
acting once) spanning a range of no more than m contiguous sites on the lattice. We then set
m = n and employ here the SUBn–n scheme. Clearly, the LSUBm scheme is equivalent to the
SUBn–m scheme when n = 2sm for particles of spin s. For the s = 1

2 case only, LSUBm =
SUBm–m, whereas for the s = 1 case LSUBm ≡ SUB2m–m. We note that the corresponding
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numbers, Nf , of fundamental configurations at a given SUBn–n level are higher for the s = 1
case than for the s = 1

2 case. Thus, whereas for the s = 1
2 case we were able to perform LSUBm

calculations with m ≤ 10 previously [83], with similar supercomputer resources available we
are now only able to perform SUBn–n calculations for the s = 1 case that are restricted to
n ≤ 8. As before [83] we similarly use massively parallel computation [107] to derive and solve
the corresponding coupled sets of CCM equations (5) and (6).

As a last step we need to extrapolate the approximate SUBn–n results thus obtained to the
exact n→∞ limit. Just as for the s = 1

2 version of the model [83] we use for the s = 1 version
the very well tested and very robust approximation scheme,

E(n)

N
= a0 + a1n

−2 + a2n
−4 , (7)

for the GS energy per spin [37,38,41,61–63,65–70,72–87]. Not surprisingly, the GS expectation
values of other physical observables both tend to converge more slowly than the GS energy,
and with leading exponents that can also depend on the model and regime under study. More
specifically, the amount of frustration present can then often determine the scaling.

For example, for most systems with no or moderate amounts of frustration present, the
magnetic order parameter M has been widely found [61–63, 65, 72, 74–76] to obey a scaling
law with leading power 1/n (rather than with 1/n2 as for the GS energy). In such cases an
extrapolation scheme of the form

M(n) = b0 + b1n
−1 + b2n

−2 , (8)

works well. However, for systems which are close to a quantum critical point (QCP) or for
which the magnetic order parameter for the phase being studied is zero or close to zero, the
extrapolation scheme of Eq. (8) tends always to overestimate the (extrapolated value of the)
order parameter and hence also to predict a somewhat too large value for the critical strength of
the frustrating interaction that drives the transition under study. In such cases much evidence
has by now been accumulated that a scaling law with leading power 1/n1/2 works much better
to fit the SUBn–n data. In such cases we then use the alternative well-studied extrapolation
scheme [37,38,41,67–70,73,77–87],

M(n) = c0 + c1n
−1/2 + c2n

−3/2 . (9)

For any physical observable P of any spin-lattice model being studied by the CCM, we may
obviously always test for the correct scaling by first fitting the SUBn–n results to a form

P (n) = p0 + p1n
−ν , (10)

where the leading exponent ν is also a fitting parameter. For the GS energy E such fits generally
yield a fitted value of ν very close to 2 for a wide variety of both unfrustrated and (even highly)
frustrated systems in different phases, as is also the case here. Such a preliminary fit then
justifies the use of Eq. (7) to find the extrapolated value of E/N . A similar preliminary analysis
for the order parameter M can be done in specific cases to justify the use of either Eq. (8) or
Eq. (9) to find the extrapolated value of M .

For the model at hand we have performed extrapolations for all of the physical observables
calculated using each of the SUBn–n data sets with n = {2, 4, 6, 8} and n = {4, 6, 8} (and
also n = {2, 4, 6}, even though this set is clearly not a preferred set), as a further test of the
robustness of the schemes used. In each case we find very similar results for the extrapolated
values, thereby lending credence to the extrapolation schemes used to find them.
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Figure 2. CCM results for the GS energy per spin, E/N , as a function of the frustration
parameter, κ ≡ J2/J1, for the spin-1 J1–J2 Heisenberg antiferromagnet (with J1 ≡ 1) on
the checkerboard lattice. The results for the SUBn–n approximations with n = {2, 4, 6, 8}
based on the Néel state (left curves) and Néel∗ state (right curves) as the respective CCM
model state are shown, together with the corresponding SUB∞(k) extrapolations obtained from
using Eq. (7) together with the respective SUBn–n data sets: k = 1, n = {2, 4, 6, 8}; and
k = 2, n = {4, 6, 8}. All SUBn–n solutions are shown out to their respective (approximately
determined) mathematical termination points; and the plus (+) symbols mark those points
where the corresponding solutions have vanishing order parameter M = 0 (and see Fig. 3(a)).
Those portions of the curves beyond the plus (+) symbols, shown with thinner curves, indicate
unphysical regions, where M < 0 for these approximations (and see text for further details).

4. Results
We now present our CCM results for the spin-1 J1–J2 model on the checkerboard lattice, using
both the Néel and Néel∗ states shown in Fig. 1 as model states, and employing the SUBn–n
truncation scheme with n ≤ 8. Figure 2 firstly shows the results for the GS energy per spin,
E/N . We display both “raw” SUBn–n results and extrapolations to the n → ∞ limit based
on the use of Eq. (7) with either the data set n = {2, 4, 6, 8} or n = {4, 6, 8}. The first thing
to notice is how well converged the results are for both sets of results based on the Néel state
(left curves) and Néel∗ state (right curves). Secondly, we note that, exactly as for the s = 1

2
case studied previously [83], both sets of curves display termination points, at particular values
of κ, namely, an upper one for the Néel curves and a lower one for the Néel∗ curves, beyond
which no real solutions exist. The termination points themselves depend on the particular
SUBn–n approximation used. What is generally observed is that as the truncation index n is
increased the range of values of the frustration parameter κ over which the corresponding SUBn–
n approximations have real solutions decreases, as may clearly be seen from Fig. 2. Such CCM
termination points are by now well understood [54,74]. Indeed, they provide a clear first signal
of the corresponding QCPs that exist in the system under study. However, we note that it is
computationally expensive to obtain the actual termination point with great accuracy, since the
CCM SUBn–n solutions require increasingly more computing power the nearer one approaches
a termination point. Thus, particularly for the higher values of the truncation index n, it is
almost certain that real solutions exist for slightly larger ranges of κ than those shown.

In the vicinity of any such mathematical CCM SUBn–n (or LSUBm) solution termination
points it is commonly found, as is the case here too as we shall see explicitly below, that the
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corresponding solutions themselves become unphysical in the sense that the respective values of
the magnetic order parameter (namely, the local on-site magnetization, M) become negative.
These values where M changes sign in this way, determined as discussed below, are denoted by
plus sign (+) symbols in Fig. 2, and the unphysical regions beyond them, out to the mathematical
termination points, where M < 0 are shown by thinner curves than the corresponding physical
regions where M > 0 that are marked by thicker curves.

We note from Fig. 2 that the corresponding SUBn–n curves for E/N based on the Néel and
the Néel∗ states, intersect one another for the same level n of truncation, at least for n ≤ 6.
It is almost certain that this is true too for the n = 8 curves, although it is computationally
expensive to find the solutions in this region, as indicated above. Furthermore, we note that as
the truncation index n increases, the angle of intersection of the corresponding SUBn–n Néel
and Néel∗ curves decreases. Indeed, the corresponding extrapolated curves seem highly likely to
join smoothly. Thus, there are clear preliminary indications that the first-order phase transition
at κcl = 1 in the classical (s→∞) version of the model might even become a continuous second-
order transition in its s = 1 counterpart. The energy crossing point of the Néel and Néel∗ results
for the s = 1 model is estimated to be κc1 ≈ 1.00± 0.01 based on our CCM SUBn–n results for
n = {2, 4, 6} and a corresponding extrapolation based on these results.

Thus, based on the energy results alone, the s = 1 model seems to share this transition
point at which Néel order melts with its classical (s→∞) counterpart. Nevertheless, there are
first indictions that the classical first-order transition at κcl = 1 might become of second-order
type for the s = 1 model. By contrast, as was shown earlier [83], in the s = 1

2 model Néel
order melts at a lower QCP, namely κ1c ≈ 0.80 ± 0.01, at which point it gives way not to the
quasiclassical Néel∗ state (or any other of the infinitely degenerate family of classical states) but
to a PVBC-ordered state.

In order to investigate the overall level of accuracy of our results it is worthwhile to examine
the two special limiting cases of κ = 0 (square-lattice HAFM) and κ→∞ (decoupled 1D HAFM
chains). Thus, firstly, based on the Néel state as the CCM model state, our extrapolated results
for the GS energy per spin for the spin-1 square-lattice HAFM are E(κ = 0)/N ≈ −2.3287
based on the SUBn–n results using the data set n = {4, 6, 8} and E(κ = 0)/N ≈ −2.3292
using the corresponding data set n = {2, 4, 6, 8}. These are in very good agreement with the
alternative results E(κ = 0)/N ≈ −2.3282 based on third-order spin-wave theory (SWT-3) [108]
and E(κ = 0)/N = −2.3279(2) based on a linked-cluster series expansion (SE) technique [109].
Our results are also in essentially exact agreement for this κ = 0 case with previous CCM
estimates that are similar limiting cases of spin-1 J1–J2 models on the Union Jack lattice [76]
and an anisotropic triangular lattice [79], both of which reduce to the square-lattice HAFM
when J2 = 0. Secondly, based on the Néel∗ state as CCM model state our extrapolated results
for the GS energy per spin for the spin-1 1D HAFM chain are E(κ→∞)/N = −1.3954κ based
on the SUBn–n results using the data set n = {4, 6, 8} and E(κ → ∞)/N = −1.3917κ using
the corresponding set n = {2, 4, 6, 8}. In this special 1D limiting case essentially exact results
are available from density-matrix renormalization group (DMRG) calculations [110], which yield
E(κ → ∞)/N = −1.4015κ. Once again, in this particularly challenging limit for the current
model, our CCM results are in very good agreement with the DMRG result.

In Fig. 3 we now show our corresponding results for the GS magnetic order parameter, M ,
to those shown in Fig. 2 for the GS energy per spin, E/N . Firstly, in Fig. 3(a) we show the
“raw” SUBn–n results based on both the Néel state (left curves) and Néel∗ state (right curves)
used as the CCM model state. We note that the plus sign (+) symbols shown in Fig. 2 for the
corresponding energy results correspond precisely to the respective points in Fig. 3(a) at which
M passes through zero. One sees clearly that in the vicinity of κ = 1, the SUBn–n curves for
M become increasingly steep as n increases in value, thereby also demonstrating why we find
increased difficulty in obtaining solutions in this region, which is also close to the corresponding
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Figure 3. CCM results for the GS magnetic order parameter, M , as a function of the frustration
parameter, κ ≡ J2/J1, for the spin-1 J1–J2 Heisenberg antiferromagnet (with J1 > 0) on the
checkerboard lattice. (a) The results for the SUBn–n approximations with n = {2, 4, 6, 8} based
on the Néel state (left curves) and Néel∗ state (right curves) as the respective CCM model state.
(b) The corresponding SUB∞(k) extrapolations: those with k = {1, 2} use the extrapolation
scheme of Eq. (9), while those with k = {3, 4} use the extrapolation scheme of Eq. (8), in
both cases with the respective SUBn–n data sets: k = {1, 3}, n = {2, 4, 6, 8}; and k = {2, 4},
n = {4, 6, 8}.

termination points discussed previously. The raw SUBn–n results show very clearly the existence
of a phase transition with a QCP at or very close to κ = 1, just as did the corresponding results
for the GS energy shown in Fig. 2.

In Fig. 3(b) we also show the extrapolations of the results in Fig. 3(a), based on both the
extrapolation schemes of Eqs. (8) and (9), and using each of the SUBn–n data sets n = {2, 4, 6, 8}
and n = {4, 6, 8} in the two cases, for completeness and the sake of comparison. As we noted
earlier, fits to each data set for M for both model states used, of the form of Eq. (10), can also
be performed to estimate the leading exponent and hence to determine which (if either) of the
two forms of Eqs. (8) or (9) is appropriate in particular cases. We refer the interested reader
to Ref. [88], for example, for a fuller description of the procedure. Based on such fits and much
prior experience, the extrapolation scheme of Eq. (8) is now clearly indicated for our Néel-state
results over most of the range of values of κ for which solutions exist, except very near the point
κ = 1 where the extrapolation scheme of Eq. (9) becomes validated.

In particular, the use of Eq. (8) is clearly indicated at the point κ = 0, corresponding to
the special limiting case of the square-lattice HAFM. Our corresponding extrapolated results
for the GS magnetic order parameter for the spin-1 square-lattice HAFM, using Eq. (8), are
M(κ = 0) ≈ 0.796 based on SUBn–n results with n = {4, 6, 8}, and M(κ = 0) ≈ 0.798 with
n = {2, 4, 6, 8}. Once again, these are in very good agreement with such independent results as
M(κ = 0) ≈ 0.804 based on SWT-3 calculations [108] and M(κ = 0) = 0.8039(4) from linked-
cluster SE calculations [109]. Our current results are also in complete accord with previous
CCM estimates [76,79] discussed above in connection with the corresponding results for the GS
energy.

We note from Fig. 3(a) that the SUBn–n results based on the Néel state as CCM model
state converge (with increasing values of n) much faster than those for the Néel∗ state, which is
fully consistent with a smaller value of the leading exponent ν in the scaling law for the latter
results than for the former, over most of their respective ranges of existence. In this case, as
explained before, the extrapolation scheme of Eq. (9), which has been validated by much prior

17th International Conference on Recent Progress in Many-Body Theories (MBT17) IOP Publishing
Journal of Physics: Conference Series 529 (2014) 012008 doi:10.1088/1742-6596/529/1/012008

11



experience, is found to be appropriate here too. The corresponding extrapolations based on the
two data sets n = {2, 4, 6, 8} and n = {4, 6, 8}, shown in Fig. 3(b), now differ somewhat from
each other. There are two reasons that come immediately to mind as possible explanations for
this difference. The first is that the inclusion of the results with n = 2 might bias the results
somewhat, in view of them being rather far from the n → ∞ limit. For this reason we usually
prefer to exclude data with n = 2. Another argument for doing so in general for square lattices
is that since the basic square plaquette is an important structural element of models on the
square lattice, approximations with n ≥ 4 are preferred a priori. However, since we employ here
SUBn–n approximations based on the checkerboard geometry rather than the square-lattice
geometry, such an argument loses much of its validity. By contrast, a second reason for the
difference in extrapolations based on the two data sets shown is that 3-parameter fits based on
only 3 inputs are inherently less stable than those based on 4 or more inputs, and for that reason
we generally argue for fits of the latter type. Clearly, the above two arguments are in conflict
over whether or not it is better to include or exclude the SUB2-2 results in our fits. From both
Figs. 2 and 3(b) we observe that the fits are, nonetheless, remarkably similar in both cases for
each of the GS quantities E/N and M , with the single exception of results for M in the region
κ & 1.

Despite the above caveat, it is abundantly clear that all of the results for M in Figs. 3(a)
and 3(b) point very strongly to a quantum phase transition at the same value κc1 ≈ 1.00± 0.01
as indicated by the GS energy results in Fig. 2. It is clear too that the transition there is a
very sharp one. The more likely scenario, based on these results, is of a continuous (but very
steep or sharp) second-order transition at which M → 0 on both sides of the transition. Clearly,
however, we cannot exclude a weak first-order transition either in which M approaches the same
small (but nonzero) value on both sides of the transition or in which M → 0 continuously on
one side (likely the Néel side) and then discontinuously jumps to a small (but nonzero) value on
the other (most likely, Néel∗) side.

We turn finally to the results of M in Fig. 3(b) based on the Néel∗ state in the region κ > 1.
As indicated above the appropriate extrapolations in this region should be based on Eq. (9),
and hence the relevant curves are those labelled SUB∞(1) and SUB∞(2). Conflicting reasons
have already been discussed with regard to which of these two extrapolations to prefer, and it is
hard to make an a priori decision on this basis. Nevertheless, we may also appeal to the known
result that the spin-1 1D Haldane chain has M = 0. Since this is precisely our limiting case
κ → ∞, on this basis the extrapolation curve SUB∞(1) is clearly preferred, since it gives this
result within very small errors.

What is clear from Fig. 3(b), however, is that whether we use the SUB∞(1) or SUB∞(2)
result, there is clear evidence that Néel∗ order is present only over a range of values of
κc1 < κ < κc2 of the frustration parameter. The SUB∞(2) curve shows M < 0 in this case for
κ > κc2 ≈ 1.4 whereas the SUB∞(1) curve shows the more physical result that M = 0 (within
very small errors) for κ > κc2 ≈ 2.5. The existence of this finite region of stable Néel∗ order is
quite different both from the s = 1

2 version of the model (for which Néel∗ order exists nowhere
as a stable GS phase) and the classical (s→∞) version (for which it co-exists with an infinite
family of states with AFM ordering along crossed J2-coupled chains as the stable GS phase for
all values κ > κcl = 1).

In Sec. 5 we summarize our results and compare further the present s = 1 model with its
s = 1

2 and classical (s→∞) counterparts.

5. Discussion and summary
In this paper we have investigated the GS properties and GS (T = 0) phase structure of the
frustrated spin-1 AFM J1–J2 model (with J1 > 0, J2 ≡ κJ1 > 0) on the checkerboard lattice.
To do so we have employed the CCM in the hierarchical SUBn–n approximation scheme carried
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out to orders n ≤ 8. As CCM model states we have employed two quasiclassical states, namely
the Néel state and the Néel∗ state. The former is the unique GS phase for κ < κcl = 1 for
the classical version of the model, while the latter is one of an infinitely degenerate family of
classical GS phases for κ > κcl = 1.

We find that for the s = 1 model the GS phase is an AFM Néel-ordered state for κ < κc1 , at
which point the staggered Néel magnetization vanishes. Our best estimate for this lower QCP is
κc1 ≈ 1.00± 0.01. On the one hand this value seems to concur with the classical value. On the
other hand it is quite different from the s = 1

2 value of κ1c ≈ 0.80± 0.01, found previously [83].
In the classical version of the model the transition at κcl = 1 is a direct first-order one (with a

discontinuity in the slope, dE/dκ, of the GS energy there). We find for the s = 1 model that the
corresponding transition at κc1 is considerably “softened,” with the most likely scenario being
that the transition is now a continuous (second-order) one, although we cannot on the available
evidence rule out a weak first-order one. All of our evidence is that, as in the classical model,
the transition at κc1 is a direct one to a GS phase with another quasiclassical form of AFM
ordering. We find zero evidence of any intermediate phase, and we can positively exclude such
a phase except for a very narrow region around κc1 . If any such intermediate phase does exist
(which we doubt on the present evidence), it can do so only over a tiny region confined to the
range 0.99 . κ . 1.01. Similarly, if present at all, any region of coexistence of Néel and Néel∗

ordering is restricted by our results to a correspondingly narrow range.
In the classical checkerboard model the Néel ordering that exists for κ < κcl = 1 gives way for

all κ > κcl to an infinitely degenerate family of GS phases characterized by AFM ordering along
the (crossed) J2 chains. In the quasiclassical limit (where one works to leading order in 1/s) it has
been shown [97] that quantum fluctuations select, by the order by disorder mechanism [49, 50],
a fourfold family of collinear states from among all other classically degenerate states. These
comprise the stripe-ordered and Néel∗ states, both of which are doubly degenerate. In a previous
CCM study of the s = 1

2 version of the present checkerboard model, the Néel∗ state was found
to have lower energy than the stripe-ordered state, and other authors [102] have also found
evidence in favour of the Néel∗ state for this model. Consequently in the present analysis we
have also been motivated to use the Néel∗ state as a CCM model state to investigate the phase
structure of the s = 1 checkerboard model for κ > κc1 . Nevertheless, further work should be
done in the future to investigate, for example, whether a quasiclassical striped state might lie
lower in energy than the Néel∗ state for the s = 1 model.

We have found clear evidence that a Néel∗ state with nonzero values of the order parameter
exists for the s = 1 case for values of the frustration parameter κc1 < κ < κc2 ≈ 2.0 ± 0.5.
This finding, perhaps the most striking of this study, differs from both the s = 1

2 and s → ∞
(classical) versions of the model. Firstly, for the s = 1

2 model, the previous CCM study [83]
found that the Néel∗ state could not survive quantum fluctuations to form a stable GS phase
for any values of κ. When used as a CCM model state, although solutions could be found for
κ > κ1c , the calculated (i.e., extrapolated) value of its order parameter M was found to be zero
(or negative) everywhere. By contrast, for the s = 1 case we find that when the Néel∗ state is
used as the CCM model state, the calculated value of M is zero (or negative) only for κ > κc2
(> κc1). Secondly, by contrast with the classical checkerboard model, where stable nonzero
Néel∗ ordering exists for all values κ > κcl, its s = 1 counterpart exists only over a finite range
of values of κ.

The question thus remains as to what is the stable GS phase of the s = 1 checkerboard model
for κ > κc2 . We note that for its s = 1

2 counterpart, the previous CCM study [83] found a
PVBC-ordered phase for κ1c < κ < κ2c ≈ 1.22± 0.02, which then gave way to a CDVBC-ordered
phase for all κ > κ2c . We have also performed very preliminary calculations (which we will report
on, more fully, elsewhere) for these phases for the s = 1 model, using the same CCM technique
as reported previously [83] for the s = 1

2 case. Very interestingly, the evidence so far is that for

17th International Conference on Recent Progress in Many-Body Theories (MBT17) IOP Publishing
Journal of Physics: Conference Series 529 (2014) 012008 doi:10.1088/1742-6596/529/1/012008

13



all values κ > κc2 the GS phase of the s = 1 model seems to take PVBC ordering. Again, if
this result stands up to further scrutiny, the s = 1 model will again show distinct differences to
both its s = 1

2 and s→∞ counterparts.
Finally, we make some brief remarks regarding the order of the various quantum phase

transitions exhibited by the checkerboard model, and in particular whether specific transitions
are allowed to be continuous. Although a general renormalization group theory approach to
continuous critical phenomena itself places only rather weak constraints on the existence of a
continuous phase transition between any two quantum phases, the traditional (and conventional)
Landau-Ginzburg-Wilson (LGW) approach [111,112] places stricter criteria. In a nutshell LGW
theory places as a necessary condition on a continuous transition from a phase P1 to a phase
P2 that the symmetry group of phase P2 is a subgroup of that P1 [111]. Physically, the order
parameter of some mode of phase P1 goes to zero at the transition as the mode becomes soft
and macroscopic condensation into it hence occurs, with a consequent symmetry reduction.

A detailed analysis and description of the various LGW-allowed continuous phase transitions
for the checkerboard model has been given elsewhere [102]. In particular it is shown explicitly
that the symmetry group of the Néel∗ state is a subgroup of that of the PVBC state. Hence,
our tentative identification of the QCP at κc2 in the s = 1 checkerboard model as being between
states with Néel∗ and PVBC order, would be LGW-allowed as a continuous transition, and
it will be interesting to examine the order of the transition in more detail. By contrast, it is
not difficult to show (and see, e.g., Ref. [102] for explicit details) that the Néel∗ and CDVBC
states break different symmetries of the checkerboard lattice (and hence of the Hamiltonian),
so that the symmetry group of neither state is a subgroup of the other. Hence, any continuous
phase transition between states with Néel∗ and CDVBC ordering would be LGW-forbidden. In
such a case the most likely scenarios would be either a direct first-order transition or one that
involves an intermediate coexistence phase with intermediate ordering and bond modulation.
Reference [102] describes the possible properties of such a coexistence phase and the nature of
the symmetry breakings at the two transition points from it into each of the pure phases.

The nature of the QCP at κ2c in the s = 1
2 model is also more open than that at κc2 in the

s = 1 model. Thus, again, while both the CDVBC and PVBC phases are doubly degenerate
(and can thus be described via Ising order parameters), it is easy to see that they have distinct
symmetries [102]. Thus, again, neither state has a symmetry group which is a subgroup of that
of the other, and a continuous transition between them is LGW-forbidden.

Lastly, we note too that the transitions at κ1c in the s = 1
2 model and at κc1 in the s = 1

model, from the Néel phase to, respectively, the PVBC phase (for s = 1
2) and the Néel∗ phase

(for s = 1) are both also LGW-forbidden as continuous transitions. Thus, for example, the
Néel∗ (and PVBC) phases both have rotations of 1

2π about the centre of any square plaquette
containing four parallel spins as symmetries, which are not shared with the Néel phase. Hence,
if the transition at κc1 for the present s = 1 model is indeed continuous, as seems possible from
our results, its nature has to be sought outside the conventional LGW paradigm. One such
possibility, which takes us too far afield to study further here however, is via the deconfinement
scenario [113].

In conclusion, the s = 1 checkerboard model has been shown to exhibit some very interesting
features of its GS (T = 0) phase diagram that are qualitatively different to those of both its
s = 1

2 and s → ∞ (classical) counterparts. In future work we intend both to investigate the
relative stabilities of the striped and Néel∗ GS phases in the intermediate regime κc1 < κ < κc2 ,
and to perform a rigorous study of the stability of possible phases with VBC order, particularly
those with PVBC and CDVBC ordering, in the regime κ > κc2 .
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[62] Krüger S E, Richter J, Schulenburg J, Farnell D J J and Bishop R F 2000 Phys. Rev. B 61 14607
[63] Farnell D J J, Gernoth K A and Bishop R F 2001 Phys. Rev. B 64 172409
[64] Farnell D J J, Bishop R F and Gernoth K A 2002 J. Stat. Phys. 108 401
[65] Darradi R, Richter J and Farnell D J J 2005 Phys. Rev. B 72 104425
[66] Farnell D J J and Bishop R F 2008 Int. J. Mod. Phys. B 22 3369
[67] Bishop R F, Li P H Y, Darradi R, Schulenburg J and Richter J 2008 Phys. Rev. B 78 054412
[68] Bishop R F, Li P H Y, Darradi R and Richter J 2008 J. Phys.: Condens. Matter 20 255251
[69] Bishop R F, Li P H Y, Darradi R and Richter J 2008 Europhys. Lett. 83 47004
[70] Bishop R F, Li P H Y, Darradi R, Richter J and Campbell C E 2008 J. Phys.: Condens. Matter 20 415213
[71] Farnell D J J, Richter J, Zinke R and Bishop R F 2009 J. Stat. Phys. 135 175
[72] Bishop R F, Li P H Y, Farnell D J J and Campbell C E 2009 Phys. Rev. B 79 174405
[73] Richter J, Darradi R, Schulenburg J, Farnell D J J and Rosner H 2010 Phys. Rev. B 81 174429
[74] Bishop R F, Li P H Y, Farnell D J J and Campbell C E 2010 Phys. Rev. B 82 024416
[75] Bishop R F, Li P H Y, Farnell D J J and Campbell C E 2010 Phys. Rev. B 82 104406
[76] Bishop R F and Li P H Y 2011 Eur. Phys. J. B 81 37
[77] Farnell D J J, Bishop R F, Li P H Y, Richter J and Campbell C E 2011 Phys. Rev. B 84 012403
[78] Götze O, Farnell D J J, Bishop R F, Li P H Y and Richter J 2011 Phys. Rev. B 84 224428
[79] Bishop R F and Li P H Y 2012 Eur. Phys. J. B 85 25
[80] Li P H Y, Bishop R F, Farnell D J J, Richter J and Campbell C E 2012 Phys. Rev. B 85 085115
[81] Bishop R F, Li P H Y, Farnell D J J and Campbell C E 2012 J. Phys.: Condens. Matter 24 236002
[82] Bishop R F and Li P H Y 2012 Phys. Rev. B 85 155135
[83] Bishop R F, Li P H Y, Farnell D J J, Richter J and Campbell C E 2012 Phys. Rev. B 85 205122
[84] Li P H Y, Bishop R F, Farnell D J J and Campbell C E 2012 Phys. Rev. B 86 144404
[85] Li P H Y, Bishop R F, Campbell C E, Farnell D J J, Götze O and Richter J 2012 Phys. Rev. B 86 214403
[86] Bishop R F, Li P H Y and Campbell C E 2013 J. Phys.: Condens. Matter 25 306002
[87] Li P H Y, Bishop R F and Campbell C E 2013 Phys. Rev. B 88 144423
[88] Bishop R F, Li P H Y and Campbell C E 2013 arXiv:1308.4573v2 [cond-mat.str-el]
[89] Singh R R P, Starykh O A and Freitas P J 1998 J. Appl. Phys. 83 7387
[90] Palmer S E and Chalker J T 2001 Phys. Rev. B 64 094412
[91] Brenig W and Honecker A 2002 Phys. Rev. B 65 140407(R)
[92] Canals B 2002 Phys. Rev. B 65 184408
[93] Starykh O A, Singh R R P and Levine G C 2002 Phys. Rev. Lett. 88 167203
[94] Sindzingre P, Fouet J-B and Lhuillier C 2002 Phys. Rev. B 66 174424
[95] Fouet J-B, Mambrini M, Sindzingre P and Lhuillier C 2003 Phys. Rev. B 67 054411
[96] Berg E, Altman E and Auerbach A 2003 Phys. Rev. Lett. 90 147204
[97] Tchernyshyov O, Starykh O A, Moessner R and Abanov A G 2003 Phys. Rev. B 68 144422
[98] Moessner R, Tchernyshyov O and Sondhi S L 2004 J. Stat. Phys. 116 755
[99] Hermele M, Fisher M P A and Balents L 2004 Phys. Rev. B 69 064404

[100] Brenig W and Grzeschik M 2004 Phys. Rev. B 69 064420
[101] Bernier J S, Chung C H, Kim Y B and Sachdev S 2004 Phys. Rev. B 69 214427
[102] Starykh O A, Furusaki A and Balents L 2005 Phys. Rev. B 72 094416
[103] Schmidt H-J, Richter J and Moessner R 2006 J. Phys. A: Math. Gen. 39 10673
[104] Arlego M and Brenig W 2007 Phys. Rev. B 75 024409; Arlego M and Brenig W 2009 Phys. Rev. B 80

17th International Conference on Recent Progress in Many-Body Theories (MBT17) IOP Publishing
Journal of Physics: Conference Series 529 (2014) 012008 doi:10.1088/1742-6596/529/1/012008

16



099902(E)
[105] Moukouri S 2008 Phys. Rev. B 77 052408
[106] Chan Y-H, Han Y-J and Duan L-M 2011 Phys. Rev. B 84 224407
[107] We use the program package CCCM of Farnell D J J and Schulenburg J, see http://www-e.uni-

magdeburg.de/jschulen/ccm/index.html
[108] Hamer C J, Zheng Weihong and Arndt P 1992 Phys. Rev. B 46 6276
[109] Zheng Weihong, Oitmaa J and Hamer C J 1991 Phys. Rev. B 43 8321
[110] White S R and Huse D A 1993 Phys. Rev. B 48 3844
[111] Landau L D, Lifshitz E M and Pitaevskii L P 1980 Statistical Physics (3rd ed) (Oxford: Butterworth-

Heinemann)
[112] Wilson K G and Kogut J 1974 Phys. Rep. 12 75
[113] Senthil T, Vishwanath A, Balents L, Sachdev S and Fisher M P A 2004 Science 303 1490

17th International Conference on Recent Progress in Many-Body Theories (MBT17) IOP Publishing
Journal of Physics: Conference Series 529 (2014) 012008 doi:10.1088/1742-6596/529/1/012008

17


