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Abstract. Cold atomic Bose-Einstein systems in the presence of simulated Rashba-
Dresselhaus spin-orbit coupling exhibit novel physical features. With pure in-plane Rashba
coupling the system is predicted in Bogoliubov-Hartree-Fock to have a stable Bose condensate
below a critical temperature, even though the effective density of states is two-dimensional. In
addition the system has a normal state at all temperatures. We review here the new physics
when the system has such spin-orbit coupling, and discuss the nature of the finite temperature
condensation phase transition from the normal to condensed phases.

1. Introduction
The ability to simulate gauge fields in neutral ultracold atom laboratory systems, reviewed in [1],
has opened a wide variety of opportunities to create and study novel physical systems. Not only
can one create artificial Abelian gauge fields, which provide analogs of conventional magnetic
fields, one can in principle produce non-Abelian gauge fields; the prospect of simulating lattice
gauge theories, reviewed in [2], with potential applications to quantum chromodynamics, is a
remarkable new direction.

Among the simplest such non-Abelian fields are artificially induced spin-orbit couplings of the
linear momentum, p, of a particle to its “spin” σ – which in cold atom systems is more generally
a hyperfine multiplet (reviewed in [3]). Of particular interest is the in-plane Rashba-Dresselhaus
interaction [4, 5] with two hyperfine states, (a, b), with the single particle Hamiltonian in the
(a, b) spinor basis,

HRD =
p2 + κ2

2m
+
κ

m
(σxpx + ησypy); (1)

here m is the atomic mass, κ is the coupling constant, σx and σy are Pauli matrices, and η
between 0 and 1, measures the anisotropy of the interaction; η = 1 corresponds to a pure
Rashba interaction, and η = 0 to an equal mixture of Rashba and Dresselhaus couplings. This
latter situation, together with a Zeeman coupling term ∝ σz, was first realized experimentally
by Lin et al. [6] and then by Zhang et al. [7] in bosonic systems, and P. Wang et al. in fermions
[8].

Here we focus on two component bosonic systems with a pure Rashba interaction, η = 1, in
which the two body interactions between particles in the same hyperfine states are described by
short range pseudopotentials vaa(r) = gaaδ(r), and vbb(r) = gbbδ(r), and the interaction between
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Figure 1. Spectrum of the single particle Hamiltonian with Rashba in-plane spin-orbit coupling.

different hyperfine states by vab(r) = gabδ(r). As we shall see, this system presents intriguing
questions not encountered in simple Bose-Einstein condensation. At η = 1, the single particle
Hamiltonian can be written as

HR =
(p⊥ + κσ)2 + p2z

2m
. (2)

where p⊥ ≡ (px, py), σ ≡ (σx, σy). The single particle eigenstates are naturally constructed by
diagonalizing the Hamiltonian, in which basis the single particle eigenenergies become

εp =
(p⊥ ± κ)2 + p2z

2m
; (3)

the ground state branch (−) has a circle of minima at p⊥ = κ, while the excited branch (+) is
connected to the ground state branch by a Dirac point at p⊥ = 0. See Fig. 1.

At zero temperature the system can be condensed in any linear combination of states on the
circle. The preferred condensates depend, however, on the interactions [9]. For gaa = gbb > gab,
i.e., greater repulsion between like than different hyperfine states, the preferred condensate
within mean-field theory is a plane wave state, e.g.,

Ψp(r) =

√
n

2
eiκx

(
1
−1

)
. (4)

Here the wave vector of the condensate, κ = κx̂, points along the x axis, but it could point
anywhere on the circle of minima. In the opposite regime, gaa < gab the preferred condensate is
a striped state, e.g.,

Ψs(r) =
√
n

(
cosκx
−i sinκx

)
, (5)

where again the wavevectors in the condensate, ±κx̂, are chosen arbitrarily to lie along the x
axis. Condensate with a larger number of wavevectors lying on the degenerate circle have higher
energy.

In the remainder of this paper we limit the discussion, for simplicity, to the plane wave
condensate with isotropic interactions, gaa = gbb = gab. We first ask whether the condensate
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is stable against quantum fluctuations at zero temperature, and thermal fluctuations. It is not
immediately obvious that the system can have a stable condensate, since the density of single
particle states in the low energy limit is two dimensional in nature, ∼ mκ/2π. Thus one could
imagine that, as in two-dimensional Berezhinskii-Kostelitz-Thouless (BKT) systems [10], the
condensate is unstable owing to the number of excited particles diverging. As we shall see, the
condensate is in fact stabilized by interactions. A second important feature of this system is
that the normal state is not kinematically forbidden, as in usual Bose-Einstein condensation
below the transition temperature. We also ask for the nature of the finite temperature phase
transition to the normal state.

2. Stability of the Bose-Einstein condensate
Unlike in BKT systems, condensates at zero temperature are stabilized by the interparticle
interactions [11]. As we now discuss, the number fluctuations at T = 0 are finite and of

order
√

(mg)3n ∼
√
na3 in weak coupling, similar to usual Bose gases in the Bogoliubov

approximation, where we write g = 4π~2a/m [owing to renormalization effects in the presence
of spin-orbit interactions, the length a is not simply related to the actual scattering length [12]].
The modes of the condensate, and the corresponding condensate depletion, are readily derived
within Bogoliubov mean-field from the single particle matrix Green’s function with anomalous
components,

G(q, t1 − t2) ≡ −i〈T
(

Ψq(t1)Ψ
†
q(t2)

)
〉, (6)

where

Ψq(t) ≡
(
ψ−,κ+q(t), ψ†−,κ−q(t), ψ+,κ+q(t), ψ†+,κ−q(t)

)
; (7)

here ψ±,p ≡ (ap ± bp)/
√

2, with ap and bp removing particles of momentum p from the a
and b hyperfine states, respectively. In the Bogliubov approximation, where ψ−,κ →

√
N0 with

N0 = n0V the number of condensate particles, and with Hartree-Fock energies included, one
finds the Fourier transform in time of the inverse Green’s function,

G−1(q, z) =


z −A −gn0 i(κ/m)qy 0
−gn0 −z −A 0 i(κ/m)qy

−i(κ/m)qy 0 z −B 0
0 −i(κ/m)qy 0 −z −D

 , (8)

where

A(q) ≡ q2/2m− µ+ g(2n0 + 2n− + n+)

B(q) ≡ (2κ+ q)2/2m− µ+ g(n0 + n− + 2n+)

D(q) ≡ B(−q).. (9)

In leading order, the chemical potential is µ0 = ∂〈H〉/∂N0 = gn0 + 2gn− + gn+, where

n∓ =
1

V

∑
p6=κ

〈ψ†∓,pψ∓,p〉 (10)

are the number of non-condensate particles in the (−) and (+) states.
The modes of the condensate, found as zeroes of detG−1(q, z)[= detG−1(−q,−z)] come

in pairs: two of positive and two of negative frequency, for each q. One excitation is
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Figure 2. The number of excited particles, in units of (2mgn0)
3/2 as a function of the spin-orbit

coupling strength κ in units of
√

2mgn0.

gapless as q → 0, and the other is gapless as q → −2κ. With strong spin-orbit coupling,
κ2/m� g|n+ − n−| ≡ g|∆n|, the spectrum to leading order for |q| � κ is

ε1(q) ≈
√

2gn0

[
q2x + q2z

2m
+

q2y
4κ2

(
g∆n+

q2y
2m

)]1/2
; (11)

since q2y/2m is generally larger than g|∆n| in typical experimental setups [6], the dispersion is
essentially quadratic for qx = qz = 0. Similarly, the gapless spectrum for q′ ≡ q + 2κ � κ is
quadratic and free-particle like,

ε2(q
′) =

q′2x + q′2z
2m

+
gn0

κ2/m+ gn0

q′2y
4m

. (12)

The condensate depletion at T = 0 is given by

nex = n− + n+ = i

∫
dzd3q

(2π)4
(G11(q, z) +G33(q, z)) , (13)

with the z integration contour surrounding the negative poles in the positive sense; the integral
converges in the ultraviolet. Figure 2 plots the depletion evaluated numerically. Generally
n− � n+ and nex ∼ n0

√
(mg)3n0 ∼ n0

√
n0a3. The leading behavior in κ is nex ∼

√
κ, as shown

analytically in Ref. [13].
The shift in the ground state energy arising from fluctuations, ∆E ≡ E − gn2/2, is of order

gn(2mgn)3/2 for weak coupling [11]. The energy decreases with increasing κ, and ∆E changes
from positive to negative at κ ∼ 0.6

√
2mgn0.

We next show that the condensate remains stable under thermal fluctuations. In terms of
the mode energies (11) and (12), the infrared contribution to the condensate depletion is

nex ∼ T
∫

d3q

(2π)3

(
gn0
ε1(q)2

+
1

ε2(q)
+ C

)
, (14)

where C is a constant as q→ 0. The integral converges in the infrared, and condensate depletion
does not destroy the Bose-Einstein condensate at finite temperature.
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Unlike in usual weakly interacting Bose systems in three dimensions in the absence of
spin-orbit coupling, the normal state (n0 = 0) of the system is kinematically allowed at low
temperatures. Is the normal state preferred over the condensate at low temperature? To answer
this we evaluate the Helmholtz free energy density of the normal state,

F = µn− 3

4
gn2 +

1

βV

∑
p

{
ln
(

1− e−βξ−(p)
)

+ ln
(

1− e−βξ+(p)
)}

, (15)

where ξ±(p) ≡ {(p⊥± κ)2 + p2z}/(2m)− µ+ 3gn/2; the chemical potential is determined by the
number equation n = (1/V )

∑
p {f(ξ−(p)) + f(ξ+(p))}, where f(x) ≡ 1/(eβx − 1). To a good

approximation, with ∆µ = µ− 3gn/2,

n(µ) ≈ −mκT
2π

ln (−∆µ/T ) , (16)

which is essentially the mean field result for a two-dimensional BKT system [10]. Unlike for free
bosons in three dimensions, there always exists a µ which satisfies the number equation, thus
the non-condensed state is not kinematically forbidden at any non-zero temperature.

In the normal state, as T → 0, µ → 3gn/2, and F → 3gn2/4. (Note that the point
T = 0, µ = 3gn/2 is highly singular.) This energy is larger than the ground state energy in the

condensed phase, (gn2/2)(1+O(
√

(2mg)3n)), indicating that at sufficiently low temperature, the
condensate is energetically preferred. However, this calculation does not exclude the possibility
that the system has a correlated normal state with energy lower than that of the condensate,
and thus the system would not condense.

3. Phase transition between the normal and condensed states
As we see, both the normal state and condensed state at the present level of mean-field
calculation are stable at zero temperature, where the condensate, of lower energy, is favored.
However, at sufficiently high temperature the condensate goes away. Thus we now ask, what is
the nature of the phase transition from condensate to normal; first or second order? See Fig. 3.
As we find in mean-field Bogoliubov-Hartree-Fock, the transition is first order [14].

T 

F 

normal 

cond 

1st order 

T 

F 

normal 

cond 

  2nd order 

Figure 3. Schematic of the free energies of the normal and condensed states. If the free energies
meet at a finite angle (left panel) the transition if first order, while if they meet at zero angle
(right panel) the transition is second order.

This first order transition is distinct from the spurious first order phase transition one finds
within the Bogoliubov-Hartree-Fock in usual Bose gases [15] (see also [16]). There the spurious
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transition is driven by order parameter fluctuations which lead to a density of particles excited
out of the condensate near the transition temperature,

nex(n0) =

∫
d3q

(2π)3

[(
1

eβEq − 1
+

1

2

)
q2/2m+ gn0

Eq
− 1

2

]
= nex(0)− 1

λ2
√
mgn0 +O(n

3/2
0 ); (17)

here λ =
√

2π/mT is the thermal wavelength and Eq ≡
√

(q2/2m)2 + gn0q2/m. The
√
n0 term,

which is non-analytic in the condensate fraction, leads to a −n3/20 term in the free energy, and
as a consequence the system, as cooled from above T 0

c – the transition temperature of the ideal
Bose gas – undergoes a first order transition, with a jump in n0, at a temperature T > T 0

c

(cf. [16]).
This first order transition is removed when correctly determining the critical behavior at the

phase transition. The issue is that the point of vanishing scattering length a = mg/4π → 0
and deviation from the transition temperature t = (Tc − T )/Tc → 0 is highly singular. The
Bogoliubov-Hartree-Fock approximation is valid in the limit a→ 0 at non-zero t, while to study
the order of the transition, one needs t→ 0 at non-zero a. These two limits are not equivalent.
Near the transition in a weakly interacting gas, one has the scaling structure for the condensate
fraction in terms of a dimensionless scaling function h(x):

n0
n

=
a

λ
h

(
tλ

a

)
, (18)

where h(x → ∞) ∼ x, the non-interacting gas limit, and for x → 0, as one approaches the
transition at finite a, one has h ∼ x2β, with β ≈ 1/3, the critical exponent for the order
parameter.

The spurious first order transition does not occur in the presence of spin-orbit coupling. In
the simple Bose gas the relevant momentum scale is

√
an0. However, Rashba spin-orbit coupling

introduces a second scale, κ, and as a consequece the density of excited particles is analytic in
n0 for κ2 � an0.

To determine the nature of the phase transition, we calculate the free energy F in terms of
the Green’s function using,

∂F
∂n0

= −µ+ gn0 − gT
∑
ν

∫
d3q

(2π)3

(
2G11(p, zν) +G33(p, zν) +

1

2
(G21(p, zν) +G12(p, zν))

)
.

(19)

Expanding in small gn0 � κ2/m, as detailed in [14], one obtains

∂F
∂n0

= −µ+
3

2
gn(µ) +Xgn0 + Y (gn0)

2 + . . . , (20)

where

X(µ, T ) ≡ 1− 4m2gT

κ
α

(
∆µ

εκ

)
, Y (µ, T ) ≡ 4m2gT

κεκ
β

(
∆µ

εκ

)
, (21)

εκ ≡ κ2/2m, and α(x) and β(x) are dimensionless functions of x, with the asymptotic forms as
x→ 0−, α(x) ' −19/32πx and β(x) ∼ 0.16/x2, and approaching 0 as x→ −∞.

Integrating with respect to n0 we have

F(n0) = Fn −∆µn0 +X
g

2
n20 + Y

g2

3
n30, (22)

17th International Conference on Recent Progress in Many-Body Theories (MBT17) IOP Publishing
Journal of Physics: Conference Series 529 (2014) 012006 doi:10.1088/1742-6596/529/1/012006

6



n0

F − Fn

Γ <
16

3

Γ =
16

3

Γ >
16

3

Figure 4. The free energy difference of the normal and condensed phases, showing the first
order phase transition from the normal to condensed phase at Γ = 16/3. The top line is for
T > Tc; the middle line is at Tc; and the bottom line is for T < Tc.

where Fn = F(n0 = 0) is the free energy in the normal phase. The coefficients of n0 and n30 are
both positive; however,for given µ > 0, X goes from positive at high T to negative at low T ,
and decreases continuously with decreasing temperature.

This change in the sign of X drives a first order phase transition, since at sufficiently small T ,
the two conditions for the transition F(n0) = Fn and ∂F(n0)/∂n0 = 0 become simultaneously
satisfied at Tc where X2 = −16Y∆µ/3. At this temperature the system undergoes a transition to
the condensed phase, as illustrated schematically in Fig. 4. The combination X2/(−Y∆µ) ≡ Γ
monotonically decreases with T , as long as X < 0. At the transition, n0 jumps from zero to
|3X/4Y g| > 0 on the condensate side.

As derived in [14], the transition temperature is given by

Tc ≈
2πn(µ)

mκ

1

| ln(2mκg)|+ C
, (23)

where C ∼ 3.4. The transition temperature depends linearly on the density, and as expected
approaches zero as g → 0. In addition, the jump in the condensate density at the transition is
n0/n(µ) ∼ 0.32/(| ln(2mκg)|+C), approaching zero as g → 0, and increasing with increasing g.

A deep issue is whether the present transition remains first order at a higher level of
approximation. On the one hand, this system is similar to other bosonic systems with
continuously degenerate single-particle minima, such as a weak-crystallization model [17] and
magnon systems [18], in which condensation transitions are predicted to be first order.

On the other hand, the single particle density of states closely resembles that in a two-
dimensional BKT system hinting at a second order transition. In finite geometry the condensate
fraction is discontinuous at the BKT transition, but in a macroscopic system correlation
corrections change the transition from first order to continuous, as one sees from scaling
arguments [10]. To fully address this issue requires scaling or renormalization group analyses;
Monte-Carlo calculations of the transition would also be useful.

Several additional factors need to be taken into account in the analysis. The first is the
dependence of the order of the transition on the geometry of the order parameter, plane wave,
stripes, or with higher symmetry, e.g., triangular. A second is the effect of the renormalization
of the interparticle interactions in the presence of spin-orbit coupling [12]

Finally we ask whether one can construct normal (non-condensed) states of lower free energy
than the optimal condensed phase. A key feature of the Rashba spin-orbit coupling considered
here is the circle of degenerate single particle states, which the normal state does not take
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particular advantage of. For example. rapidly rotating Bose condensates, develop a set of
nearly degenerate (lowest Landau level) single particle excitations; this degeneracy allows the
formation of highly correlated normal, or totally fragmented condensates, with low occupation
per level, at sufficiently rapid rotation. Whether a similar highly correlated state is better than
a Bose-Einstein condensate remains an open question (see, e.g, [19]).
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