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Abstract. We designed a focus/defocus neutron optics system, in order to investigate the
performance, precision, efficiency, and operational and designing challenges of such coupled 2-
lens systems, which could potentially find applications where small beam cross sections are
beneficial, e.g., virtual neutron source concepts and high efficiency chopper systems. Our
particular prototype (as described and discussed in this paper) has already been used in an
on-going experiment, involving neutron spin filtering with dynamically polarized protons.

After the designing and construction phases, we continued by performing a long series of
simulations and measurements, in order to facilitate the alignment of the lenses, and investigate
and understand the behaviour and output of the system. All measurements were performed
at the BOA beamline at PSI. The simulations were particularly useful in aligning the lenses:
tilts as small as 0.04° could easily be accounted for in our simulations and guide successfully
the experimental aligning procedure of the first lens. Although harder to do in the case of two
lenses, we were still able to reproduce fairly successfully with our simulations, tilts from both
lenses. We have noticed (both in our experiments and simulations) that the sensitivity of such
a set-up is ~ 0.01°.

1. Introduction
Ever since supermirrors were proposed and built [1, 2, 3], they have found numerous applications
in transporting, bending, focusing and polarizing neutron beams. Supermirror technology makes
use of multilayer depth-graded coatings (most commonly of Ni and Ti) in order to increase the
critical angle of reflection of the mirror by a factor m compared to that of natural **Ni. Looking
at the definition of that factor m = 6,/0N%, with #~% = 0.1°/A, it becomes apparent that the
longer the wavelength of the incident neutron, the higher the reflectivity (i.e., the probability of it
being reflected), as the divergence tolerance increases with wavelength. Nowadays, supermirrors
exhibit reflectivity above 80% for m < 4, but that value drops to 50% as their coating reaches
m = 7. A thorough discussion on technicalities of supermirror development can be found in [4].
With technological advances allowing for construction of supermirrors with higher m
values, improved reflectivity, and new shapes (elliptical and parabolic), and also ongoing
theoretical work on supermirrors, which has been greatly facilitated by simulations, more uses of
supermirrors are becoming apparent. The idea of using supermirror lenses to focus and defocus
a neutron beam has begun being investigated and tested over the last few years [5, 6]. In this
paper we present a proof-of-principle project, carried out at PSI, on the performance and overall
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behaviour of a 2-lens focus/defocus system.

2. Conceptual Phase and Simulations

The purpose of this project has been to investigate the use of parabolic supermirror neutron
lenses in a focus-defocus system, starting from the initial design phase, and following through
with the experimental set up and measurements. Besides our interest in the behaviour,
sensitivity, efficiency and experimental outcome of such a coupled lens system, we were
particularly focused on determining whether simulations can function not only as designing
tools, but also reliably guide and correct the alignment of the two lenses during the experiment.

We began by designing the two lenses and determining their characteristics using the Monte
Carlo Ray-tracing software McStas [7, 8]. Here we had to take into account that the behaviour
and performance of these prototypes should be explored in conjunction with a potential
application: a novel neutron spin filter using DNP (Dynamic Nuclear Polarization) [9]. The
specifics of that experiment dictated to a certain extent the characteristics and dimensions that
the two lenses should have. For example, the defined sample size for use in the DNP experiment
was only ~ 5 x 5mm?, it should be placed as close to the exit of the focusing lens as possible
(to maximize intensity), but not closer than ~ 200 — 250 mm due to restrictions from equipment
placed around the sample. Furthermore, at the sample position the focusing lens (hereafter L1)
should provide spatially homogeneous intensity, while the defocusing lens (hereafter L2), placed
after the sample, should be able to accept as much as possible of the neutrons coming through the
sample and restore the original beam properties. All the above, combined with considerations
on costs for the prototype, resulted after several rounds of simulations and optimizations in
two lenses whose characteristics are presented on Table 1. L2 is ideally identical to L1 (turned
180° to serve as a defocusing lens), but we ended up constructing only half of it (thus its 0.5m
length), as a full defocusing lens was not really necessary for these preliminary, proof of principle
experiments. In our simulations however, we integrated both the half-meter and the one-meter
L2 lens, as it is obvious from the results presented on Table 2.

Table 2 shows simulated intensity and divergence values at various crucial positions along the
2-lens set up, for 3 different configurations for L2: i) full one-meter length, placed 0.8 m after L1,
ii) full one-meter length, placed 0.5 m after L1, iii) half-meter length, placed 0.5m after L1. At
the first configuration, the focal points of L2 and L1 are at the same position, midway between
the two lenses (both lenses have a focal point of 0.4m). At the second and third configuration
(denoted as ‘defoc’), L2 is positioned closer to L1, ‘looking’ 0.3 m before the focal point of L1.
Also, in all cases we have used slits before L1 (but also before L.2), in order to make sure that a)
the full entrance of L1 is illuminated and b) no neutrons pass around L1, contaminating either
L2 or making their way onto our final CCD images.

As indicated by the results summarized on Table 2, L1 exhibits a neutron transport of 87%
for a white beam (1 —10A4) of ~ 0.5° divergence. 22% of those transported neutrons are focused
on a 5 x 5mm? area at the focal point of the focusing lens, with the divergence increased
to ~ 1.3°. About 37% to 76% of the neutrons transported by L1 are passed through to L2,
depending on the position of L2, as it is seen by the two intensity values listed for the entrance
of L2. This seemingly low value of intensity transfer between the two lenses can be attributed
to the divergence of the direct beam, connected to the relatively large distances, and aberration
effects. Aberration alone accounts for up to 30% of intensity loss. As mentioned earlier, our
lenses were optimized for providing homogeneous intensity distribution on a 5 x 5 mm? target
at 200mm after L1, and not as a stand alone focus-defocus lens, in which case, the losses in
neutrons transferred among the two lenses could be lowered to 10 — 15%.

Finally, the length and position of L2 change significantly (as expected) its intensity output
and the outcoming neutrons’ divergence. For example, increasing the length of L2 restores the
initial divergence of the beam, on the expense of intensity. On the other hand, moving L2



International Workshop on Neutron Optics and Detectors (NOP&D 2013) IOP Publishing
Journal of Physics: Conference Series 528 (2014) 012009 doi:10.1088/1742-6596/528/1/012009

closer to L1 (configurations ii and iii) boosts up intensity, but doesn’t quite manage to lower the
divergence as efficiently as the third configuration.

We mention here that the option to ‘defocus’ L2 came out of the optimization of the system
for the needs of the DNP experiment: we opted for higher intensity input for L2, at the expense
of the restored divergence of the beam.

Table 1. Characteristics of the two prototype lenses.

Focusing Lens (L1) Defocusing Lens (L2)
Shape (trully-shaped) parabolic  (trully-shaped) parabolic
Length [mm)] 1000 500
Entrance size [mm?] 25 x 25 13.363 x 13.363
Exit size [mm?] 13.363 x 13.363 20.04 x 20.04
m 3.6 3.6
focal point [mm] 400 (after L1 exit) 400 (before L2 entrance)
gain factor! 75—11 —

Table 2. Characteristic intensity and divergence values from simulations

Intensity ~ Divergence [°]
[n/s/mA] (horizontal/vertical)

L1 entrance 2.34 x 108 0.5/0.4
L1 exit 2.04 x 10 1.3/1.2
200mm after L1 2 54x107  1.3/1.2
Focal point? 4.55 x 107 1.3/1.2
L2 entrance 7.08 x 107 1.3/1.2
L2 entrance (defoc)  1.55 x 10 1.3/1.2
(full) L2 exit 5.17 x 107 0.55/0.45

(full) L2 exit (defoc) 8.68 x 107 0.7/0.7
(half) L2 exit (defoc) 1.11 x 10® 0.9/0.9

3. Experimental Phase: Measurements and Simulations

After the construction of the lenses was complete, we proceeded to perform experiments at the
BOA beamline at PSI. Our experimental procedure was divided in two steps: i) the placement
and alignment of the lenses in the beamline one ofter the other, and ii) testing and investigating
the performance and outcome of the complete 2-lens system for various configurations, i.e.
varying the relative lens distances and orientations, usage of slits, etc. The lenses were placed
on separate motorized stages that could move along the direction of the beam path, and also
rotate horizontally and vertically with respect to the axis of the lens. Furthermore, both lenses
were equipped with microscrews mounted on their holders, enabling for very small inclination

! Wavelength dependent
2 On an area of 5 x 5mm?
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Figure 1. A schematic representation of our experimental setup. The focusing (L1) and
defocusing (L2) lenses are shown, along with two groups of rays: parallel rays (upper group),
and divergent rays (lower group). The distance D1 between the two lenses as well as the distance
D2 between the defocusing lens and the CCD camera, were varying in our simulations and
experiments. Relevant scales, ratios and sizes have been exaggerated for illustration purposes.

adjustments. A CCD camera was mounted on a third motorized stage, with the ability to move
along the beamline, positioning the camera at various distances from the lenses. All results
(experimental and simulated) presented here are for a white neutron beam. During all steps
of the experimental procedure, extended simulation runs were performed in order to verify and
guide our experiments.

3.1. Measurements and Simulations for the Focusing Lens

We began the experiments by placing and aligning the focusing lens L1 into the beamline. After
an initial ‘approximate’ alignment with the use of a laser beam and a common light bulb, we
finalised the alignment of L1 using the full neutron beam, performing scan measurements along
the flightpath of the neutrons and correcting the position of L1 accordingly. McStas simulations
were particularly helpful in the alignment procedure as the following representative example
demonstrates.

At some point during the alignment of L1, the 1D intensity profile of the neutron beam in
the Y-direction (up-down direction with respect to the path of the neutrons) as captured by the
CCD camera, featured an asymmetry (Fig. 2(a)). Using McStas, we were able to reproduce that
feature in our simulations, by introducing an upward tilt of the lens of 0.06°. Fig. 2(b) shows
the simulated profiles (X- and Y-direction) for a perfectly aligned lens, and Fig. 2(c) shows the
simulated profiles for the tilted lens. We were then able to correct our experimental set-up by
tilting L1 0.06° downwards, and finalise its alignment.

Fig. 3 shows the 2-dimensional neutron intensity distributions after the alignment of L1 was
completed, at two positions after L1: 200mm (panels (a) and (c)) and at the focal point (400mm)
(panels (b) and (d)). Plots (a) and (b) correspond to the experimental images and plots (c) and
(d) are result of simulations. We notice an excellent agreement between the experimental and
simulated images, also highlighted on the results presented in Fig. 4: after we were convinced
that L1 was aligned to a satisfactory level (through extensive measurements and comparison to
simulations), we performed some measurements where we introduced a tilt of the lens (either
in the horizontal of vertical direction), in order to quantify the sensitivity of our first lens to
such misalignments. The upper row of Fig. 4 shows the 2D neutron intensity (experimental (a)
and simulated (b)) distribution, 200mm after L1 and with L1 tilted by 0.2° to the right, relative
the the neutrons’ path. We notice a dramatic change of the intensity distribution profiles,
due to a relatively small misalignment when we compare Figs. 4(a) and 4(b) to Figs. 3(a)
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and 3(c) respectively. Plot (c) of Fig. 4 shows the one-dimensional horizontal profiles of the
2D distributions. The agreement between simulation and experiment is excellent: besides the
match in the shape of the two curves, we notice that the length-scales of the two lines agree
very well, and so do their relative intensity changes.
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Figure 2. (a) Experimental 1D intensity profiles of L1 in X- and Y-directions. The Y-profile
features an asymmetry: a bulging and a shift to the left, due to an accidental tilt of L1. (b)
Simulated 1D intensity profiles of L1 in X- and Y-directions, for a perfectly aligned lens. (c)
Simulated 1D intensity profiles of L1 in X- and Y-directions after introducing a 0.06° upward
tilt of L1. Measurement and simulations correspond to a distance of 200mm after L1.

(c) (d)

Figure 3. Experimental (panels (a) and (b)) and simulated (panels (c¢) and (d)) 2D Neutron
intensity distributions at 200mm ((a) and (c)) and 400mm - focal point ((b) and (d)) after L1.

3.2. Focusing and De-focusing Lenses Setup
With L1 nicely aligned, we introduced the defocusing lens L2 into the beamline and began its
alignment. Simulations were again successfully used to correct and guide the procedure. With
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both lenses aligned we performed scan measurements along the beam path with the CCD camera
covering a range of distances between 300mm-2000mm from the exit of L2. We also performed
inclination scans, were L2 was rotated vertically (up-down) and horizontally (left-right) from its
aligned position, in order to quantify the effect of tilts of L2 on our set up.

Fig. 5 shows experimental (rows 1 and 3) and simulated (rows 2 and 4) 2D intensity
distributions for three different positions after L2 (400mm, 1100mm, and 2000mm). The two
lenses are 500 mm apart on the plots of the two upper rows and 800 mm apart on the plots of
the two lower rows.

In Fig. 6 we show an example of the defocusing lens: as part of our experiments, L2 was
rotated vertically (up-down direction) within a range of angles. Panel (a) of Fig. 6 shows the
1D intensity profile 300 mm after the exit of L2, for a ‘downwards tilt’ of 0.04°. Panel (b) of the
same figure, was out attempt to simulate the effect of such a tilt. The match between experiment
and simulation, even for such a small angle, is remarkable.
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Figure 4. Up: 2D neutron intensity distributions, 200mm after L1. The lens was tilted towards
the right (relatively to the neutrons’ direction) by 0.2°. Panel (a) shows the experimental result
and panel (b) the simulated one. Down: 1D horizontal profiles of the plots in the upper row.
Notice how precisely the simulation matches the experimental result, not only in the overall
shape of the 1D profiles, but also the sizes of their features, and the relative increase of the
central peak within each plot.
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Figure 5. Experimental (rows 1 and 3) and simulated (rows 2 and 4) 2D intensity distributions
in various distances from L2: 400mm (left), 1100mm (centre) and 2000mm (right) after L2. L2
was placed 500 mm after L1 for the plots on rows 1 and 2, and the distance was increased to
800 mm for the plots of rows 3 and 4

4. Summary

We have designed, built and tested a focus-defocus, 2-lens system, using parabolic supermirrors.
We used McStas not only to simulate the two lenses during the designing phase, but also as a
tool to guide us through the experimental alignment and testing. The simulations have proven to
be a valuable tool for the alignment procedure, being able to successfully and reliably reproduce
effects of misalignments as small as 0.04°. Generally speaking, we noticed that the system of the
2 lenses was sensitive to tilts of the order of 0.01°, making its alignment a tedious, non-trivial
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Figure 6. Simulated and experimental 1D intensity profiles in Y-direction, at 300 mm after L2.
The two lenses were placed 500 mm apart. In our experimental set up, L2 was tilted downwards
by 0.04°. Our simulations were able to reproduce the effect of the tilt very successfully.

task, which however is possible and can greatly benefit from simulations. On this note, as a
follow-up to this project, we are currently planning the design of an ‘automatic alignment tool’,
where camera images and simulations are used simultaneously, to provide real-time feedback to
the lenses’ motors, and thus spead-up and automatize the alignment procedure for coupled lens
Systems.
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