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Abstract. We study the quark deconfinement phase transition in cold (T = 0) neutron star
matter and we calculate various structural properties of hybrid stars. For the quark phase, we
use an equation of state (EOS) based on the Field Correlator Method (FCM) extended to the
case of nonzero baryon density. For the confined hadronic phase we use a relativistic mean
field model considering both pure nucleonic and hyperonic matter. We constrain the values
of the gluon condensate G2, which is one of the EOS parameter within the FCM, making use
of the measured mass, M = 1.97 ± 0.04 M�, of the neutron star in PSR J1614-2230. Our
results show that the values of G2 extracted from the mass measurement of PSR J1614-2230
are consistent with the values of the same quantity derived, within the FCM, from recent
lattice QCD calculations of the deconfinement transition temperature at zero baryon chemical
potential.

1. Introduction

Neutron stars are the densest macroscopic objects in the universe. A large variety of calculations
of neutron star structures [1, 2, 3, 4] predict a maximum stellar central density (the one for
the maximum mass star configuration) in the range of 4 − 8 times the saturation density
(∼ 2.8 × 1014 g/cm3) of nuclear matter. Therefore, neutron stars, can be viewed as natural
laboratories to explore the low temperature T and high baryon chemical potential region
of the phase diagram of quantum chromodynamics (QCD) [5, 6]. Under these conditions
nonperturbative aspects of QCD are expected to play an essential role, and a transition to a
phase with deconfined quarks and gluon is expected to occur and to effect a number of interesting
astrophysical phenomena [7, 8, 9, 10, 11, 12, 13, 14, 15].

Current high-precision numerical calculations of QCD on a space-time lattice at zero baryon
chemical potential μb (zero baryon density) seem to indicate that at high temperature and for
physical values of the quark masses, the transition to quark gluon plasma is a crossover [16]
rather than a real phase transition.

Unluckily, present lattice QCD calculations at finite baryon chemical potential are plagued
with the so called “sign problem”, which makes them unrealizable by all presently known lattice
methods. Thus, in order to explore the QCD phase diagram at low temperature T and high μb,
it is necessary to adopt some approximations in QCD or to apply some QCD effective model.

Along these lines the MIT bag model [17] and the Nambu Jona-Lasinio (NJL) model [18]
have been widely used to calculate the quark matter EOS. However the MIT bag and the NJL
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models (as other QCD effective models) can not make predictions in the high T and zero baryon
chemical potential region and, thus, can not be tested with present lattice QCD calculations.

Recently the deconfinement phase transition has been described using an EOS of quark gluon
plasma derived within the Field Correlator Method (FCM) [19, 20] extended to finite baryon
chemical potential [21, 22]. The Field Correlator Method is a nonperturbative approach to QCD
which includes from first principles the dynamics of confinement in terms of color electric and
color magnetic correlators. The model contains two parameters: the gluon condensate G2 and
the large distance static quark-antiquark (QQ̄) potential V1. These two quantities control the
EOS of the denconfined phase at fixed quark masses and temperature. A very interesting aspect
of the FCM is the possibility to describe the whole QCD phase diagram, from high temperature
and low baryon chemical potential, to low T and high μb limit.

Another interesting feature of this method is that the value of the gluon condensate can
be obtained from lattice QCD calculations of the deconfinement transition temperature Tc, at
μb = 0. This establishes a useful link to directly relate lattice QCD simulations and neutron
star physics. To explore this link is the main aim of this work.

2. Equation of state of neutron star matter

The quark matter equation of state we used in this work is based on the Field Correlator Method
(FCM) [19, 20]. The method has been recently extended to the case of nonzero baryon density
[21, 22] making possible its application to neutron star matter.
The FCM provides a natural explanation and treatment of the dynamics of confinement in terms
of Color Electric DE(x), DE

1 (x) and Color Magnetic DH(x), DH
1 (x) Gaussian correlators. In

this work we use the approach described in Refs. [23, 24].
The EOS of the quark phase is governed by two parameters namely the static long distance

QQ̄ potential V1 and the gluon condensate G2. All our results have been obtained in terms
of these two quantities considered as independent on density [25, 26]. Recently in Ref. [27] a
density dependence on G2 has been proposed.

Using QCD sum rules [28], the gluon condensate G2 has been determined, with large
uncertainty, to be in the range G2 = (0.012 ± 0.006) GeV4. Therefore we have varied G2

within the range determined in [28]. We used the following values of the current-quark masses:
mu = md = 5 MeV and ms = 150 MeV. In summary, the quark matter EOS contains two
parameters: G2 and V1 = V1(T = 0).

For the EOS of confined hadronic matter we adopt a nonlinear relativistic mean field model
[29, 30] and we make use of the GM1 parametrization given by Glendening-Moszkoski [31, 32].

The nucleon coupling constants (gσ, gω, gρ) are fitted to the bulk properties of nuclear matter.
In particular, for the GM1 parametrization [31, 32] the incompressibility of symmetric nuclear
matter and the nucleon effective mass at the empirical saturation density are respectively
K = 300 MeV and M∗ = 0.7 M (being M the bare nucleon mass). The inclusion of hyperons
involves new couplings, which can be written in terms of the nucleonic ones: gσY = xσgσ,
gωY = xωgω, and gρY = xρgρ. In this model it is assumed that all the hyperons in the baryon
octet have the same coupling. We will consider xσ in the range 0.6–0.8. In addition, following
Ref. [31], we will take xρ = xσ. Finally the binding energy of the Λ particle in symmetric
nuclear matter, BΛ = −28 MeV, is used to determine xω in terms of xσ. Notice that the case
with xσ = 0.6 produces stars with a larger hyperon population (for a given stellar gravitational
mass) with respect to the case xσ = 0.8 [32, 33]. In addition to these two parametrizations
for hyperonic matter (hereafter called NY matter), we will consider the case of pure nucleonic
matter (hereafter called N matter).
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Figure 1. (Color online) Baryon chemical potential μb versus pressure P in β-stable matter at
T = 0. Curves for the quark phase are relative to two different values of the gluon condensate G2,
reported in GeV4, and V1 = 0.05 GeV. Curves for the hadronic phase are relative to hyperonic
matter (NY ) with xσ = 0.7 and to pure nucleonic matter (N).

3. Phase transition in beta-stable neutron star matter

The composition of neutron star matter is settled by the requirements of electric charge neutrality
and equilibrium under the weak interaction processes (β-stable matter). Under such conditions
and in the case of neutrino-free matter [1, 34], the chemical potential μi of each particle species
i can be written in terms of two independent quantities, the baryonic and electric chemical
potentials μb and μq respectively: μi = biμb − qiμq, where bi is the baryon number of the species
i and qi denotes its charge in unit of the electron charge magnitude.

In the pure hadronic phase μb = μn, the neutron chemical potential, and μq = μe, the electron
chemical potential. In the pure quark phase the quark chemical potentials μf (f=u, d, s) are
related to μb and μq by the formulae μu = (μb − 2μq)/3 and μd = μs = (μb + μq)/3.

We next assume a first order deconfinement phase transition [35] and require global electric
charge neutrality of bulk beta-stable stellar matter [36]. An important consequence of imposing
global charge neutrality is that the hadronic and the quark phases can coexist for a finite range
of pressures. This treatment of the phase transition is known in the literature as the Gibbs
construction for the mixed phase [36].

In the following we consider the case of T = 0 matter, which is appropriate to describe
neutron stars interiors at times larger than about a few minutes after their formation [1, 34].

In figure 1 we plot the relation between the baryon chemical potential μb and the total
(i.e. baryonic plus leptonic contributions) pressure P , in β-stable matter, for the hadron and
the quark phases. For the hadronic phase we consider hyperonic matter (NY ) with xσ = 0.7
(continuous line) and pure nucleonic matter (N) (dashed line). For the quark phase we use
two different values of the gluon condensate G2 = 0.006, 0.012 GeV4 and a common value
V1 = 0.05 GeV for the large distance static QQ̄ potential. The phase transition occurs at the
intersection point between the curves describing the two different phases. This crossing point
is significantly affected by the value of the gluon condensate, in particular when G2 increases
the onset of the deconfinement transition is shifted to higher pressure (higher baryon chemical
potential). A similar qualitative behaviour is typical of bag-like models in terms of the bag
constant B. In addition we note that the presence of hyperons in the hadronic phase moves the
phase transition point to larger pressures. Similar results have been found using different values
for the hyperon-nucleon couplings (xσ = 0.6, 0.8) for the hadronic EOS.

Keeping a fixed value of the gluon condensate, G2 = 0.006 GeV4, we show in figure 2 the
effects of V1 on the phase transition point. As one can see, increasing the value of V1 the
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Figure 2. (Color online) Baryon chemical potential μb versus P in β-stable matter at T = 0.
Curves for the quark phase are relative to three different values of V1, reported in GeV, and for
G2 = 0.006 GeV4. The curve for the hadronic phase is relative to hyperonic matter (NY ) with
xσ = 0.7.
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Figure 3. (Color online) Total pressure P of cold β-stable matter as a function of the baryon
number density ρ, for different values of G2 (reported in GeV4 units) and for V1 = 0.05 GeV.
In the left (right) panel we show results for pure nucleonic (hyperonic) matter in the hadronic
phase. For the hyperonic matter EOS we set xσ = 0.7.

transition point is shifted to values of the pressure higher and higher.
In figure 3, we show the pressure for β-stable matter as a function of the baryon number

density ρ in the case of pure nucleonic matter (left panel) and hyperonic matter (right panel)
with xσ = 0.7 for the hadronic phase. For the quark phase we consider two different values of
the gluon condensate G2. Increasing the value of G2 we note a shift of the phase transition to
larger baryon densities. This is consistent with the behaviour of figure 1.

4. Hybrid star structure

In this section we show the results of our calculations of hybrid stars structure. To this purpose
we integrate the well known Tolman, Oppenheimer and Volkov equations (see e.g. [32, 37]) to
get various stellar properties and report the results of a systematic study in which we vary the
value of the gluon condensate G2 between the constraints imposed by QCD sum rules [28]. To
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Figure 4. (Color online) Stellar mass M versus central baryon number density ρc (first and
third panels) and versus stellar radius R (second and fourth panels) for hybrid stars for two
values of G2 (reported in GeV4 units) and for V1 = 0.05 GeV. Continuous lines in each panel
denote compact stars with no quark matter content. The first two panels refer to the pure
nucleonic matter case (N) while in third and fourth panels refer the hyperonic matter case
(NY ) with xσ = 0.7. The dashed horizontal line, in each panel, represents the measured mass
of PSR J1641-2230.

model the stellar crust we have used the EOS of Ref. [38].
In figure 4 we report the stellar gravitational mass M (in unit of the solar mass M� =

1.99× 1033g) versus the central baryon number density ρc (first and third panels) and M versus
radius R (second and fourth panels) in the case of pure nucleonic stars (continuous lines) and
of hybrid stars for different G2. The dashed horizontal line, in each panel, represents the mass
of the PSR J1641-2230 (M = 1.97 ± 0.04M� ) [39]. We first focus on the first two panels
of figure 4, where in the hadronic phase just nucleons are included. We obtain stable hybrid
star configurations for all the considered values of the gluon condensate, with maximum masses
ranging from Mmax = 1.72 M� (case with G2 = 0.006 GeV4) to Mmax = 2.11 M� (G2 = 0.012
GeV4). Notice that the hybrid star branch of the stellar equilibrium configurations shrinks as
G2 is increased. This is in full agreement with the results for the EOS reported in figure 3.

We now turn to the case (third and fourth panels in figure 4) in which the hadronic phase
contains hyperons (NY matter) and we set xσ = 0.7. Notice that the presence of hyperons
reduces the value of the maximum mass of pure hadronic star (i.e. compact stars with no
quark matter content) from Mmax = 2.33 M� in case of pure nucleonic stars (continuous line
in the first and second panels of figure 4) to Mmax = 1.99 M� in case of hyperonic stars with
xσ = 0.7 (continuous line in the third and fourth panels in figure 4). We obtain stable hybrid
star configurations also in the case of NY matter for all the considered values of the gluon
condensate and, similarly to the nucleonic case, we note again that the hybrid star branch
shrinks as G2 is increased. In this case we get maximum hybrid star masses of 1.72 M� for
G2 = 0.006 GeV4 and 1.98 M� for G2 = 0.012 GeV4. We note that for values of the gluon
condensate G2 > 0.012 GeV4 our models are able to predict the mass of the PSR J1614-2230.
More precisely, the minimum value of G2 required for the pure nucleonic case is G2 = 0.010
GeV4 while for the hyperonic case such value is G2 = 0.012 GeV4. It should be noted that these
values of G2 depend besides the EOS of hadronic matter, on the value adopted for the large
distance QQ̄ potential.

In table 1 we report the properties of the maximum mass configuration for hybrid stars for
V1 = 0.01 GeV and varying G2 and the hyperon coupling constants. We note that in the case
xσ = 0.6, hybrid stars are possible only for G2 < 0.013 GeV4. In fact, for G2 > 0.013 GeV4 the
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Table 1. Properties of the maximum mass configuration for hybrid stars for different values
of the gluon condensate G2 in GeV4 (second column) and for V1 = 0.01 GeV. The parameter
xσ (first column) fixes the hyperons coupling constants as described in section 2. The entry
N in the first column refers to the case of pure nucleonic matter for the hadronic phase. The
mass Mmax, the central baryon number density ρHyb

c and the radius R of the maximum mass
configuration are reported respectively in the third, fourth and fifth column. The quantities
with the label HS refer to the case of purely hadronic stars. Stellar masses are reported in unit
of the solar mass M� = 1.99×1033g, central densities are given in fm−3, and stellar radii in km.

xσ G2 Mmax ρHyb
c R MHS

max ρHS
c RHS

0.006 1.44 1.55 9.54
N 0.012 1.89 0.77 12.55 2.33 0.87 11.70

0.016 2.05 0.75 12.66

0.006 1.44 1.56 9.52
0.8 0.012 1.89 0.77 12.53 2.15 0.94 11.50

0.016 2.04 0.81 12.40

0.006 1.43 1.56 9.51
0.6 0.010 1.73 0.89 12.00 1.80 1.00 11.49

0.013 1.80 1.00 11.49

baryon number density for the onset of the mixed phase is larger than the central baryon number
density of the maximum mass pure hadronic star. Notice that for xσ = 0.6 is not possible to
account for the measured mass of PSR J1614-2230 for any value of G2.

5. Lattice QCD calculations and measured neutron star masses

Within the FCM the deconfinement transition temperature Tc at μb = 0 reads [21]

Tc =
a0

2
G

1/4

2

(
1 +

√√√√1 +
V1(Tc)

2a0G
1/4

2

)
, (1)

with a0 = (3π2/768)1/4 in the case of three flavors.
In their analysis authors of Ref. [21] assume V1(Tc) = 0.5 GeV, thus Tc in equation (1) is a
simple function of G2, and is represented in figure 5 by the curve labeled V1(Tc) = 0.5 GeV.
This result can hence be compared with lattice QCD calculations of Tc giving the possibility
to extract the range of values for the gluon condensate compatible with lattice results. This
comparison has been done in Ref. [21], and it is done in the present work in figure 5, where
we consider recent lattice QCD calculations of Tc [40, 41]. Details to the specific lattice QCD
calculations are given in the figure 5 caption. As one can see, the comparison with lattice QCD
calculations of Tc restricts the gluon condensate in a rather narrow range G2 = 0.0025–0.0050
GeV4.

Next to verify if these values of G2 are compatible with those extracted in section 4 from
hybrid star calculations and measured neutron star masses, we need to relate the parameter
V1 ≡ V1(0), entering in the zero temperature EOS of the quark phase, with V1(Tc) in equation (1).

In Ref. [23] it has been shown that such relation is given by:

V1(T ) = V1(0)

{
1 −

3

2

λT

h̄c
+

1

2

(
1 + 3

λT

h̄c

)
e−

h̄c

λT

}
, (2)
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Figure 5. (Color online) Deconfinement transition temperature Tc at μb = 0. The curve labeled
with V1(Tc) = 0.5 GeV reproduces the FCM results of Ref. [21] for a fixed value V1(Tc) = 0.5 GeV
of the large distance static QQ̄ potential. The curve labeled with V1 = 0.01 GeV (V1 = 0.10 GeV)
corresponds to the transition temperature at μb = 0 obtained solving numerically equations (1)
and (2) for the case V1(0) = 0.01 GeV (V1(0) = 0.10 GeV). The horizontal heavy and thin lines
represent respectively the central value and the error estimate of lattice QCD calculations. In
particular, the (red) continuous lines refer to the calculations [41] of the HotQCD collaboration
Tc = (154±9) MeV; the (blue) short-dashed lines refer to the calculations [40] of the Wuppertal–
Budapest collaboration Tc = (147± 5) MeV. Finally, the vertical green line represents the lower
limit for G2 which is compatible with the lower bound of the measured mass of PSR J1614-2230
for the case V1(0) = 0.01 GeV.

where λ = 0.34 fm [42] is the vacuum correlation length. Thus V1(Tc) = 0.5 GeV corresponds
to V1(0) = 0.85 GeV to be used in the T = 0 EOS of the quark phase. In this case there is no
phase transition in neutron stars for all the considered values of G2. Thus for these values of
the EOS parameters PSR J1614-2230 would be a pure nucleonic star.

We can also evaluate the FCM transition temperature at μb = 0 corresponding to the case
V1(0) = 0.01 GeV. To this purpose we solve numerically equations (1)–(2) and we obtain
the results represented in figure 5 by the curve labeled V1 = 0.01 GeV. The comparison of
these results with lattice QCD calculations [40, 41] of Tc restricts the gluon condensate in
the range G2 = 0.0103–0.0180 GeV4. Coming now to the astrophysical constraints on the gluon
condensate, the vertical grey line in figure 5 represents the lower limit for G2 which is compatible,
in the case V1(0) = 0.01 GeV, with the lower bound of the measured mass of PSR J1614-2230
(see section 4).
A similar analysis can be done for the case V1(0) = 0.10 GeV. Now the comparison between
the FCM transition temperature at μb = 0 (curve labeled V1 = 0.10 GeV in figure 5) and
lattice QCD calculations of the same quantity gives G2 = 0.0085–0.0153 GeV4, whereas one
gets G2 ≥ 0.006 GeV4 from the lower bound of the measured mass of PSR J1614-2230.

We thus find that the values of the gluon condensate extracted within the FCM from lattice
QCD calculations of the deconfinement transition temperature Tc at μb = 0 are fully compatible
with the value of the same quantity extracted from measured neutron star masses.

6. Summary and conclusions

In this work we have studied the quark deconfinement phase transition in neutron star matter
and the properties of hybrid stars employing an EOS for the quark phase derived from the FCM
extended to finite baryon chemical potential. The EOS of the FCM is parametrized in terms of
the gluon condensate G2 and of the large distance static QQ̄ potential V1 at zero temperature.
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We have obtained stable hybrid star configurations for all the values of the gluon condensate
fulfilling the condition that the deconfinement transition can occur in pure hadronic stars.

We have established that the values of the gluon condensate extracted within the FCM
from lattice QCD calculations of the deconfinement transition temperature at μb = 0, are fully
consistent with the value of the same quantity constrained by the mass measurement of PSR
J1614-2230. The FCM thus provides a powerful tool to link numerical calculations of QCD on
a space-time lattice with neutron stars physics.
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