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Abstract. We present an extension of relativistic single-particle distribution function for
weakly interacting particles at local thermodynamical equilibrium including spin degrees of
freedom, for massive spin 1/2 particles. We infer, on the basis of the global equilibrium case,
that at local thermodynamical equilibrium particles acquire a net polarization proportional to
the vorticity of the inverse temperature four-vector field. The obtained formula for polarization
also implies that a steady gradient of temperature entails a polarization orthogonal to particle
momentum. The single-particle distribution function in momentum space extends the so-called
Cooper-Frye formula to particles with spin 1/2 and allows to predict their polarization, and
particularly of Lambda hyperons, in relativistic heavy ion collisions at the freeze-out.

1. Introduction

The single-particle distribution function is the main quantity in kinetic theory and its form
at local thermodynamical equilibrium for relativistic, weakly interacting, gases is well known.
For spinless particles, it is simply the Bose-Einstein distribution with x-dependent values of
temperature and chemical potential (which can be defined as Bose-Jüttner distribution):

f(x, p) =
1

eβ(x)·p−ξ(x) − 1
(1)

where β = 1
T0

u is the inverse temperature four-vector,T0 being the proper temperature measured

by a comoving thermometer with the four-velocity u and ξ = μ0/T0 is the ratio between the
proper chemical potential μ0 and T0. The above formula has, as straightforward consequence, the
invariant momentum spectrum at local thermodynamical equilibrium, the so-called Cooper-Frye
formula [1]:

ε
dN

d3p
=

∫
Σ

dΣμpμf(x, p) (2)

where Σ is a space-like 3-dimensional hypersurface. This formula is widespreadly used in e.g.
relativistic heavy ion collisions to calculate hadronic spectra at the end of the hydrodynamical
stage.

The distribution (1), multiplied by a degeneracy factor (2S + 1), is also used for particles
with spin (for fermions replacing the −1 with +1 in the denominator) being understood that f
means the total particle density in phase space, i.e. summed over polarization states. However,
in general, particles may not evenly populate the various polarization states and one may then
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wonder what is the appropriate extension of (1) in this case. Indeed, in this work, we will
answer this question and provide a generalization of (1) and (2) including the spin degrees of
freedom. We will argue that a non-even population of the polarization states arises when the
inverse temperature four-vector field has a non-vanishing antisymmetric part of its gradient
and calculate the polarization vector for massive spin 1/2 particles. Phenomenologically, this
extension may have several interesting applications. For instance, it would make possible to
predict the value of particle polarization in relativistic heavy ion collisions [2, 3, 4, 5, 6, 7] at the
hydrodynamical decoupling, provided that local thermodynamical equilibrium applies to spin
degrees of freedom as well. The detailed analysis and calculation can be found in [8].

2. Single particle distribution function with spin

At global thermodynamical equilibrium with finite angular momentum density the density
operator is well known [9, 10] and reads:

ρ̂ =
1

Z
exp[−Ĥ/T + μQ̂/T + ω · Ĵ/T ]PV (3)

where ω is a constant fixed vector whose physical meaning is that of an angular velocity and T
is the global temperature, that is the temperature of a thermostat in contact with the system
or that measured by a thermometer at rest with respect to the external inertial observer. The
PV operator is the projector operator onto localized states [11] which is needed in order to
avoid the relativistic singularity at r = c/ω. For this distribution, it has been shown the single-
particle distribution function of an ideal relativistic Boltzmann gas of particles with spin S can
be obtained from just statistical mechanics arguments [11]:

f(x, p)rs = eξ e−β·p 1

2

(
DS([p]−1

R
ω̂
(iω/T )[p]) + DS([p]†R

ω̂
(iω/T )[p]†−1)

)
rs

(4)

where β = 1
T (1,ω×x) is the inverse temperature four-vector; λ is the fugacity; [p] is the SL(2,C)

matrix corresponding to the Lorentz transformation taking the time unit vector t̂ into p̂ (so-
called standard transformation); DS stands for the (S, 0) irreducible representation of SL(2,C);
R is the SL(2,C) corresponding of a rotation, which is calculated for an imaginary angle iω/T .

For S = 1/2 case this formula can be express using the Dirac spinors u(p) and v(p), thanks
to the Weyl’s representation, with the normalization ū(p)ru(p)s = 2mδrs and with C = iσ2 (σ
being Pauli matrices) [12, 13] read:

(
u+(p)

u−(p)

)
=

√
m

(
DS([p])

DS([p]†−1)

) (
v+(p)

v−(p)

)
=

√
m

(
DS([p]C−1)

DS([p]†−1C)

)
(5)

and D1/2(R
ω̂
(iω/T )) = exp[(−ω/T )σ3/2] one can rewrite the (4), for spin 1/2 particles in the

Boltzmann limit as:

frs(x, p) = eξ e−β·p 1

2m
ūr(p) exp[(ω/T ) Σz]us(p) , (6)

being

Σz =
1

2

(
σ3 0
0 σ3

)
, (7)

and similarly for antiparticles. The extension to Fermi-Dirac statistics of this formula is not a
straightforward calculation like in the non-rotating case, hence we make an ansatz about this
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extension which reproduces the usual Fermi-Dirac distribution in the non-rotating case and, at
the same time, has the (4) for S = 1/2 case as its Boltzmann limit.

f(x, p)rs =
1

2m
ūr(p)

(
exp[β · p − ξ] exp

[
−1

2

μνΣ

μν

]
+ I

)−1

us(p)

f̄(x, p)rs = − 1

2m
v̄s(p)

(
exp[β · p + ξ] exp

[
1

2

μνΣ

μν

]
+ I

)−1

vr(p) (8)

whereas 
 is the covariant form for the angular velocity:


μν = (ω/T )(δ1
μδ2

ν − δ1
νδ

2
μ) =

√
β2Ωμν (9)

and Ωμν turns out to be the acceleration tensor of the Frenet-Serret tetrad of the β field lines
[11]. The above second equality holds for a rigid velocity field only [11, 14].

3. Single particle distribution function at local thermodinamical equilibrium

In quantum relativistic statistical mechanics, local thermodinamical equilibrium density reads:

ρ̂LE =
1

ZLE
exp

[
−

∫
d3x βν(x)T̂ 0ν(x) − 1

2

μν(x)Ŝ0,μν(x) − ξ(x)ĵ0(x)

]
(10)

and it is obtained by maximizing entropy S = − tr[ρ̂ log ρ̂] with the constraints of given
local values of mean energy-momentum, angular momentum and charge density [15, 16]. As
entropy is not conserved in nonequilibrium situation, the above operator breaks covariance
(there cannot be invariant spatial integrals of non-conserved currents) and it is time dependent.
This operator is used in derivations of the relativistic Kubo formulae of transport coefficients
[17] and, in comparison with usual formulations, it has an additional term involving the
spin tensor, obtained in Ref. [18]. In principle, all quantities at local thermodynamical
equilibrium in quantum relativistic statistical mechanics should be calculated using (10) as
density operator, including the covariant Wigner function of the Dirac field. However, the full
calculation is quite complicated and goes beyond the scope of this work. At the lowest order
of approximation, however, we know that the single particle distribution function must yield
the same formal expression at global thermodynamical equilibrium with space-time dependent
intensive thermodynamics functions, that is space-time dependent β, 
 and ξ. Hence, the
single-particle distribution functions (4) for S = 1/2 case become:

f(x, p)rs =
1

2m
ūr(p)

(
exp[β(x) · p − ξ(x)] exp

[
−1

2

(x)μνΣ

μν

]
+ I

)−1

us(p)

f̄(x, p)rs = − 1

2m
v̄s(p)

(
exp[β(x) · p + ξ(x)] exp

[
1

2

(x)μνΣ

μν

]
+ I

)−1

vr(p) (11)

where β is the inverse temperature four-vector, ξ is the ratio between comoving chemical
potential and temperature, Σμν = (i/4)[γμ, γν ] are the generators of Lorentz transformations of
4-components spinors, u(p) and v(p) are the spinors solutions of the free Dirac equation.

Using this distribution functions we obtain the free Dirac part of the canonical stress-energy
tensor as:

Tμν(x) =

∫
d3p

ε
pμpν

∑
r

(frr + f̄rr) (12)

and the current:

jμ(x) =
1

2

∫
d3p

ε
pμ

∑
r

[
tr frr − tr f̄rr

]
(13)
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both involving the traces of frs, f̄rs. If 
, which is adimensional in natural units, is small enough
such that one can write the expansion:(

eβ(x)·p∓ξ(x) exp

[
∓1

2

(x) : Σ

]
+ I

)−1

=
∞∑

n=1

(−1)n+1e−nβ(x)·p±nξ(x) exp
[
±n

2

(x) : Σ

]
(14)

where : is a shorthand for the 2 tensor contraction, i.e. 
(x) : Σ = 
μν(x)Σμν , then it is
possible to obtain an approximate expression of those traces for 
μν � 1. Note that at full
rotational equilibrium this condition amounts to require h̄ω/KT � 1 (natural units purposely
restored) which is a normally fulfilled condition. Hence:

tr
(
exp

[
±n

2

(x) : Σ

])
� tr

(
I ± n

2

(x) : Σ +

n2

4

(x) : Σ
(x) : Σ

)

= 4 +
n2

4

(x)λρ
(x)στ tr (ΣλρΣστ ) (15)

where the tracelessness of Σ matrices has been used. By using known formulae for the traces of
γ matrices it can be shown that:

tr (ΣλρΣστ ) = gλσgρτ − gλτgρσ

whence the equation (15) becomes:

tr
(
exp

[
±n

2

(x) : Σ

])
� 4 +

n2

2

(x) : 
(x) . (16)

Therefore, we have:

∑
r

frr �
∞∑

n=1

(−1)n+1e−nβ(x)·p+nξ(x)

(
4 +

n2

2

(x) : 
(x)

)

= 4nF +
1

2
nF (1 − nF )(1 − 2nF )
(x) : 
(x) (17)

where:

nF =
1

eβ(x)·p−ξ(x) + 1

and similarly for
∑

r f̄rr with the replacement ξ → −ξ. One can then plug the equation (17) and
its corresponding for

∑
r f̄rr into equations (12) and (13) to obtain, e.g., for the charge density:

j0(x) = 2

∫
d3p(nF − n̄F ) + 
(x) : 
(x)

1

4

∫
d3p[nF (1−nF )(1− 2nF )− n̄F (1− n̄F )(1− 2n̄F )] .

For 
 = 0 one recovers the usual expression; it is worth noting that the lowest order correction
to charge density and stress-energy tensor is quadratic in 
, i.e. in h̄ω/KT at equilibrium, then
it’s a small contribution.

While the general physical meaning of the fields β and ξ can be easily inferred from the
equilibrium limit (β is the local inverse temperature four-vector field and ξ the ratio between

the comoving chemical potential μ0(x) and the local comoving temperature T0(x) = 1/
√

β2),

μν(x)’s expression cannot be uniquely obtained from the equilibrium distribution. The reason
of this ambiguity is that at rotational equilibrium, the tensor 
 is:


μν =
√

β2Ωμν (18)
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where Ωμν is the acceleration tensor of the Frenet-Serret tetrad of the β field lines [11] and [14]:


μν = −1

2
(∂μβν − ∂νβμ) (19)

that is the relativistic generalization of angular velocity of fluid. In a nonequilibrium situation,
the right hand sides of equations (19) and (18) differ and it is not obvious which one applies,
perhaps neither. However, if the system is not too far from equilibrium, 
 cannot be too distant
from the right hand side of (19). Particularly, the difference must be of the 2nd order in the
gradients of the β field (for instance: (∂ ·β)(∂μβν −∂νβμ) or second order gradients like ∂μ∂νβ

λ)
which vanish at equilibrium [14]. For the lowest-order formulation of relativistic hydrodynamics,
the expression (19) is sufficient to determine the expression of spin-related quantities.

4. Polarization

The main consequence of the distribution functions (11) is that spin 1/2 particles get polarized
at local thermodynamical equilibrium. The polarization four-vector, for a particle with mass m
and four-momentum p is defined as:

Πμ = −1

2
εμρστS

ρσ pτ

m
(20)

where Sρσ is the mean value of the total angular momentum operator of the single particle.
However the Levi-Civita tensor makes the orbital part of the total angular momentum irrelevant,
so we are left with the spin-tensor density in the phase space S0,ρτ (x, p) contribution only:

〈Πμ(x, p)〉 = −1

2

1∑
r frr

εμρστ
dS0,ρσ(x, p)

d3p

pτ

m
. (21)

The canonical spin tensor can be computed using (11):

Sλ,μν(x) =
1

2

∫
d3p

2ε

∑
rs

(
frs(x, p)ūs(p){γλ, Σμν}ur(p)

)
−

(
f̄rs(x, p)v̄r(p){γλ, Σμν}vs(p)

)
. (22)

We can write the spin tensor as:

Sλ,μν =
1

2

∫
d3p

ε

(
pλΘμν + pνΘλμ + pμΘνλ + pλΘ̄μν + pνΘ̄λμ + pμΘ̄νλ

)
(23)

where
Θμν ≡

∑
r

(frsūs(p)Σμνur(p)) Θ̄μν ≡ − tr
(
f̄rsv̄r(p)Σμνus(p)

)
.

Altogether, the form (23) of the canonical spin tensor only depends on the fact that the
distribution function frsf̄rs are a superposition of an even number of γ matrices. The full
antisymmetry of the indices is now apparent, although it was already contained in the operator
definition ensuing from the properties of γ matrices. Thanks to trace cyclicity, Θ can be written
as a derivative with respect to the 
 tensor:

Θμν =
∞∑

n=1

(−1)n+1e−nβ(x)·p+nξ(x) tr
(
exp

[n

2

(x) : Σ

]
Σμν

)

=
∞∑

n=1

(−1)n+1e−nβ(x)·p+nξ(x) 1

n

∂

∂
μν
tr

(
exp

[n

2

(x) : Σ

])

=
∂

∂
μν
tr

(
log

{
I + e−β(x)·p+ξ(x) exp

[
1

2

(x) : Σ

]})
(24)
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where the (14) has been used. Then, using the approximation (16), the equation (24) becomes:

Θμν �
∞∑

n=1

(−1)n+1e−nβ(x)·p+nξ(x) 1

n

∂

∂
μν

(
4 +

n2

2

(x) : 
(x)

)

=
∞∑

n=1

(−1)n+1e−nβ(x)·p+nξ(x)n
(x)μν = nF (1 − nF )
(x)μν . (25)

Likewise, it can be shown that:

Θ̄μν � n̄F (1 − n̄F )
(x)μν . (26)

Not far from equilibrium, for small value of 
μν , the polarization vector becomes:

〈Πμ(x, p)〉 = − 1

4
∑

r frr
εμρστ

1

ε

(
p0Θρσ + pσΘ0ρ + pρΘσ0

) pτ

m
= − 1

2
∑

r frr
εμρστ Θρσ pτ

m
(27)

and at the lowest orther in 
 becomes:

〈Πμ(x, p)〉 � 1

16
εμρστ (1 − nF ) (∂ρβσ − ∂σβρ)

pτ

m
=

1

8
εμρστ (1 − nF )∂ρβσ pτ

m
(28)

where nF = 1/(exp(β(x) · p − ξ(x)) + 1) is the Fermi-Dirac distribution function.
The above formula has the remarkable consequence that quasi-free particles get polarized

not only in a vorticous flow (what was pointed out in previous works [19]), but also in a
steady temperature gradient without velocity flow, i.e. when ∇β0 �= 0.In the non-relativistic the
predicted polarization reads:

Π = (Π0,Π) = (1 − nF )
h̄p

8mKT 2
(0,∇T × p̂)

which is usually tiny but could be relevant in some extreme situations.
It may be of interest, e.g. for relativistic heavy ion collisions, to calculate the space-integrated

mean polarization vector. For a three-dimensional spacelike hypersurface Σ, one has:

〈Πμ(p)〉 ≡

∫
dΣλ

pλ

ε
(−1/2)εμρστ

dS0,ρσ

d3p

pτ

m∫
dΣλ

pλ

ε

∑
r

frr(x, p)

� 1

8
εμρστ

pτ

m

∫
dΣλ pλ nF (1 − nF )∂ρβσ

∫
dΣλ pλnF

. (29)

For antiparticles, one gets the same formula, with n̄F = 1/(exp(β(x) ·p+ ξ(x))+1) replacing
nF . Here an important comment is in order: the fact that local thermodynamical equilibrium
implies the same orientation for the polarization vector of particles and antiparticles (unlike
e.g. in the electromagnetic field) is a general outcome and does not depend on the introduced
approximations. It stems from the fact that the spin tensor, as well as the angular momentum,
is a charge-conjugation even operator, or, more simply stated, that thermal and mechanical
effects do not ”see” the internal charge of the particles.

This formula (29) may be used to predict the polarization of particles, in particular Λ
hyperons, produced at the freeze-out (primary particles) in a relativistic heavy-ion collision,
after the hydrodynamical evolution.

In a heavy ion collision the polarization could exist also in plasma phase if it were described
as weakly interacting particles, since is an effect of the local equilibrium. Nevertheless it’s not
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the case for QGP and it’s unknown the effect of strong coupling on the polarization. However
at the freeze-out it’s assumed, to compute the spectra that the fluid instantaneously produce
free streaming hadrons distributed with a free particle-distribution function, then we can think
that also happened with the spin’s degrees of freedom. In a more realistic model of the particle
production the interaction between hadrons turn of slowly and this polarization effect could be
modified.

The polarization of the primary particles emitted is proportional to the thermal vorticity (19)
at freeze-out hypersurface and could give an observable contribution [20].

The observation of this effect would be a confirmation of the achievement of the local
thermodynamical equilibrium also to spin degrees of freedom and would also indicate that
vorticity and circulation may persist in the hydrodinamical evolution up to freeze-out.
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