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Abstract. We calculate various equations of state for QCD matter at vanishing net-baryon
density starting from recent lattice QCD results at high temperatures, going to low temperatures
using a hadron resonance gas (HRG) model to describe the confined phase. In order to have a
better description of the experimental situation we use an implementation of the HRG model
that allows the system to switch, after the chemical freeze-out, to a situation of partial chemical
equilibrium. We explore the possibility of different freeze-out temperatures. Our results can be
used in the hydrodynamic modeling of relativistic heavy-ion collisions at the LHC and at the
highest RHIC beam energies.

1. Introduction

In relativistic heavy-ion collision experiments currently taking place at RHIC (Relativistic
Heavy-Ion Collider) and at the LHC (Large Hadron Collider), the deconfined phase of strongly
interacting matter, called Quark-Gluon Plasma (QGP), is transiently created. The QGP is
formed immediately after the collision; the system then cools down and expands and matter
goes through a phase transition from the QGP into a confined hadron gas. The transition is
an analytic crossover, as unambiguously proven by first-principle simulations of QCD on the
lattice [1]. The transition takes place at a pseudo-critical temperature T, which has recently
been estimated in lattice QCD simulations as well [2, 3].

Relativistic hydrodynamics (see e.g. the reviews in Refs. [4, 5]) has been very successful
in modelling the collective dynamics of the matter created in the laboratory, starting from a
stage immediately after thermalization until the kinetic freeze-out of final state hadrons. The
evolution of the system is driven by the conservation equations for energy, momentum and for
the additionally conserved charges (net-baryon number Np, net-electric charge Ng and net-
strangeness Ng), under the assumption of local thermal equilibrium. The Equation of State
(EoS) is an essential ingredient for hydrodynamic simulations: it provides a relation between
energy density €, pressure p and the densities ng, ng and ng of the conserved charges. Assuming
the conservation of entropy, one needs to know the EoS only along adiabatic paths. In particular
we will follow the path np/s = 0, i.e. we consider the situation of a vanishing np. In addition,
to get closer to the situation realized in a heavy-ion collision, we impose ng = 0, while the
relationship between ng and np is fixed by the Z/A of the colliding nuclei.
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Figure 1. (Color online) Scaled interaction measure I(T)/T* (panel (a)) and pressure p(T)/T*
(panel (b)) as functions of the temperature 7. The symbols correspond to the lattice QCD results
from [10]; the dashed curves are the results of the HRG model in thermodynamic equilibrium.

Lattice gauge theory simulations for the QCD equation of state reach nowadays
unprecedented levels of accuracy. A basic quantity for the EoS is the interaction measure
I = € — 3p, which has been calculated in [6, 7] and in [8, 9, 10]. The numerical results for
I(T)/T* in [6, 7] show significant differences from those in [9, 10] in the transition region. We
opt for utilizing in our work the most recent, continuum-extrapolated lattice QCD data from
the WB-collaboration [10], corresponding to a system of 241 quark flavors with physical quark
masses.

We build up a baseline QCD equation of state for ng = 0, by combining a suitable
parametrization of these lattice QCD results with a hadron resonance gas (HRG) model in
thermodynamic equilibrium. We implement partial chemical equilibrium (i.e. a non-equilibrium
situation) in the hadronic phase, in order to properly account for the actual chemical composition
in the confined phase. This issue cannot be addressed within equilibrium lattice QCD
thermodynamics, but it is of fundamental importance in order to reproduce the experimentally
observed flow and pp-spectra, as well as the correct particle ratios [11]. Because of the present
uncertainty in its exact value [12, 13], we study various values for the chemical freeze-out
temperature T.p, below which the HRG is in partial chemical equilibrium. Having such QCD
equations of state at hand will allow a more controlled determination of the QGP transport
properties, as for example the shear (and bulk) viscosity coefficients, and even more important
to check which modification to the thermodynamics would imply a variation of 15 MeV in T,.

This proceeding contribution is organized as follows: in section 2, we show how to combine
the lattice QCD results with an HRG model in thermodynamic equilibrium. Section 3 deals
with the inclusion of partial chemical equilibrium in the hadronic phase. In section 4, we discuss
the obtained QCD equations of state and discuss their main features. For more details we refer
the reader to Ref. [14].

2. Lattice QCD-based EoS
Continuum-extrapolated lattice QCD results for thermodynamic quantities in a system of 241
quark flavors with physical quark masses were presented in [10]. Their results for the scaled
interaction measure I(7)/T* and for the scaled pressure p(T)/T* are shown in figure 1 panels
(a) and (b), respectively. The other thermodynamic quantities can be obtained from I(7) and
p(T) via €(T) = 3p(T) + I(T) and s(T") = (e(T) + p(T7))/T.

QCD thermodynamics in the hadronic phase can be understood in terms of the HRG model,



XIV Conference on Theoretical Nuclear Physics in Italy IOP Publishing
Journal of Physics: Conference Series 527 (2014) 012014 doi:10.1088/1742-6596/527/1/012014

which describes hadronic matter in thermodynamic equilibrium, see e.g. Refs. [15, 16]. The
pressure of the model in the thermodynamic limit is given by

p(T, {p}) = Z(—1)3k+1g“7§3/d3ﬁ In [1 1 (—1)Bk+1e*<x/mw>/q ’ (1)

k

where the sum is taken over all the hadronic (including resonances) states k included in
the model. In equation (1), dx and my are the degeneracy factor and the mass, and gy
is the chemical potential of the hadron-species k. In chemical equilibrium, the latter reads
Mk = Brpup+Qrpug+Skpis, where By, Q and Sy, are the respective quantum numbers of baryon
charge, electric charge and strangeness, while g, pg and pg denote the chemical potentials
associated with npg, ng and ng.

The particle number density of species k, ny=(9p/Jur)r, is given by

dy, / 3 1
T, = d 2
) = oy (1Pt 4 I m )T ()

and the net-baryon density follows from np = ) Brpnj. Since the vanishing np is considered,
all pg are set to zero in the chemical equilibrium case.

The HRG model used in this work contains states with mass up to 2 GeV as listed in the
edition [17] of the Particle Data Book, as well as in the EoS-package provided in [18].

We construct an equation of state which serves as a baseline for the chemical equilibrium
case by using our suitable parametrization of the lattice QCD results from [10] at high 7" and
switching to the HRG model at low T" around a temperature of 172 MeV. In order to avoid
discontinuities in the thermodynamic quantities, which can generally arise in such an approach,
we employ a straightforward interpolation procedure between the two parts in the interval
165 MeV < T < 180 MeV. Such a procedure ensures that the pressure and its first and second
derivatives with respect to T are continuous functions, like for example the speed of sound which
shows a smooth behavior for all the temperatures in the considered range.

3. Hadron resonance gas in partial chemical equilibrium
A realistic description of a heavy ion collision assumes that the hadronic phase is not in
complete chemical equilibrium, since the time scales for inelastic particle number changing
processes are typically much larger than the lifetime of the hadronic stage [19]. This was first
discussed in [20] and then considered in numerous works, see e.g. Refs. [11, 21, 22, 23, 24].
At the hadronization temperature 7., hadronic matter is formed in chemical equilibrium;
subsequently for temperatures below the chemical freeze-out temperature Ty, (with T, < T¢) the
inelastic processes become suppressed, while the elastic interactions mediated by frequent strong
resonance formation and decays (e.g. 7 — p — 7w, Km — K* — Km, pr — A — pr etc.)
continue to occur. As a consequence, the experimentally observed ratios of particle multiplicities
of those species 7, which are stable against strong decays within the lifetime of the system, are
fixed at T,,. Namely, for T < T, their effective particle numbers N; = N; + Y op dr—si Ny
are frozen, where N; is the particle number of the stable hadron ¢, N, the particle number of
resonance r and d,_,; gives the average number of hadrons ¢ produced in the decay of resonance
r. The above sum is taken over all the resonances that decay into hadron ¢ within the lifetime
of the hadronic stage. Each stable particle species i acquires therefore an effective chemical
potential 1;(T"). The chemical potentials of the resonances can the be written as a combination
Wy = Y ; dr—; pt; of the ones of the stable particles.

The EoS is obtained as a highly-involved relation between p, € and all charge densities: this
is due to the conservation of the effective number N; of each stable particle species i below Tj,.
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Figure 2. Temperature-dependence of the effective chemical potentials for selected hadronic
states, for a chemical freeze-out temperature of T,, = 150 MeV. The solid curves depict p;(7T)

for the baryons 27, 2=, ¥, AY and p from top to bottom, while the dashed curves show wi(T)
for the mesons 7, K~ and 7" from top to bottom.

Assuming the conservation of entropy, the ratio between the effective particle number density
and the entropy density 7;/s is fixed at Tij,. The following conditions, which imply that each
n; depends on all the effective chemical potentials py (T') (including p;(T")), provide a practical
tool to conserve all the N; and to determine all the p;(T) for T < To:

ni(T, {pr (T)}) _ ni(Ten, {0})
s(T {pe(T)})  s(Ten,{0})

Besides being needed for the determination of the EoS, the knowledge of all the 11;(T") is necessary
to determine the final state hadron abundances.

In this work, we consider as stable particle species the mesons 7°, 7%, 7=, K+, K—, K°, i’
and 7 and the baryons p, n, A%, ¥, 29 %=, 20 == and Q~ as well as their respective anti-
baryons, i.e. in total 26 different states. For the chemical freeze-out temperature, we consider
different values, namely T.,/MeV= 145, 150, 155 and 160. These are within the range of the
Te-values determined in lattice QCD [2, 3.

In figure 2, we show the behavior of the effective chemical potentials p;(T) as functions of
the temperature, for some exemplary particle species in the case T, = 150 MeV. The p;(7T)
increase with decreasing T', as one would expect since the stable states become more populated
by resonance decays at low temperatures. In the related published paper [14] we provide a
parametrization of such chemical potentials, with a table of the parameters needed to obtain
them.

3)

4. Discussion and Conclusions

We obtained various equations of state by continuously combining our parametrization of the
lattice QCD data [10] as a function of T' with the HRG model either in full or in partial chemical
equilibrium in the hadronic phase. The latter case has been studied for various T.,-values. In
hydrodynamic simulations, however, the EoS is used in the form p(e,np), i.e. as a function of
€ and np, as well as the results for the effective chemical potentials u; are required for the
determination of the particle abundances. In figure 3, we show our results for the different
equations of state p(e) supplemented by the corresponding 7'(€) for np = 0. In figure 3 we focus
on the energy density regions, in which the confinement transition and the chemical freeze-out
take place.
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Figure 3. (Color online) (a) Equations of state p(¢) for np = 0 zoomed into the regions in ¢, in
which the confinement transition and the chemical freeze-out occur. The solid curve corresponds
to the HRG model in chemical equilibrium. For the dashed curves, partial chemical equilibrium
is included below €.,. The value of €., depends on the value of the freeze-out temperature T,j,.
We consider T,;,/MeV = 145, 150, 155 and 160 (from top to bottom in the figure, respectively).
(b) Temperature vs. energy density T'(e) for the equations of state with chemical equilibrium
(solid curve) and with partial chemical equilibrium (dashed curves) (labelling as in panel (a)).

The differences in p(e) between chemical equilibrium (solid curve) and partial chemical
equilibrium (dashed curves) in the hadronic phase turn out to be small, while the e-dependence
of T is significantly influenced, for € < €., by the chemical freeze-out (see panel (b) in figure 3).
Our results are collected in tabulated form and made available in [25]. For practical convenience,
in [14] we also provide parameterizations of these numerical results as functions of e.

The high precision in the provided parameterization is motivated by our goal to maintain
thermodynamic consistency and continuity in the second derivatives up to a high numerical
accuracy.

The temperature-dependence of the speed of sound cz obtained by numerical differentiation,
is shown in figure 4 (solid curve) and compared to the lattice QCD results available from
the WB-collaboration [9]. In the case of full chemical equilibrium, our curve agrees with
the lattice QCD data within error-bars: in particular, we find a rather large ¢2(T) in the
confinement transition region. This indicates that our EoS is rather stiff. The dashed curves
correspond to the partial chemical equilibrium case. One observes a discontinuity in ¢2(T) at
T = T, which is characteristic for the chemical freeze-out. As expected, the behavior of ¢2(T)
in the non-equilibrium situation is different from the trend seen in equilibrium lattice QCD
thermodynamics.

In summary, we constructed QCD equations of state for vanishing net-baryon density based
on recent continuum-extrapolated lattice QCD results in the physical quark mass limit at high
T [10], continuously combined with a HRG model at low 7. The latter was considered to be either
in chemical or in partial chemical equilibrium. Focusing on the partial chemical equilibrium case,
we studied different values for the chemical freeze-out temperature within its presently expected
range [12].

In the present work, we focused ourselves to the ng = 0 case. Therefore, our results can be
used as an input in the hydrodynamic modeling of high-energy heavy-ion collisions at the LHC
and at RHIC top beam energies and at mid-rapidity. We will address the equation of state in
partial chemical equilibrium at finite density in a forthcoming publication.
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Figure 4. (Color online) Temperature-dependence of the squared speed of sound ¢2(T). The
solid curve corresponds to the HRG model in chemical equilibrium. The symbols represent
available equilibrium lattice QCD data from [9]. The dashed curves highlight ¢2(T") when partial
chemical equilibrium is assumed in the hadronic phase. We consider T,;,/MeV = 145, 150, 155
and 160 (from top to bottom, respectively).
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