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Abstract. Significant challenges exist in the thermal control of Photonics Integrated Circuits 

(PICs) for use in optical communications. Increasing component density coupled with greater 

functionality is leading to higher device-level heat fluxes, stretching the capabilities of 

conventional cooling methods using thermoelectric modules (TEMs). A tailored thermal 

control solution incorporating micro thermoelectric modules (µTEMs) to individually address 

hotspots within PICs could provide an energy efficient alternative to existing control methods. 

Performance characterisation is required to establish the suitability of commercially-available 

µTEMs for the operating conditions in current and next generation PICs.  The objective of this 

paper is to outline a novel method for the characterisation of thermoelectric modules (TEMs), 

which utilises infra-red (IR) heat transfer and temperature measurement to obviate the need for 

mechanical stress on the upper surface of low compression tolerance (~0.5N) µTEMs. The 

method is benchmarked using a commercially-available macro scale TEM, comparing 

experimental data to the manufacturer’s performance data sheet.  

1.  Introduction 

Photonics Integrated Circuits (PICs) increasingly feature in today’s optical communication systems, in 

order to realise devices with greater spectral efficiency and reduced power losses. PICs can represent a 

stringent packaging challenge, however, particularly in terms of their requirements for thermal control. 

Devices such as laser arrays can feature tight temperature limits (±0.1K), low operating temperatures 

(as low as 45°C), moderate heat loads (~1W) but very high heat fluxes (over 10
2
 W/cm

2
). Addressing 

the areas of high heat flux directly using micro Thermoelectric Modules (µTEMs) reduces the need for 

heat spreading and reduces the energy required to maintain temperature control in PICs. 

Characterising commercially-available µTEMs is essential to determine their suitability for PIC 

applications. Literature has documented the characterisation of macro scale TEMs extensively [1-8] 

but has not yet reported the precise characterisation of micro scale devices. TEM characterisation 

consists of two distinct approaches in published works. The first is the characterisation of 

thermoelectric parameters [1-5] such as Seebeck coefficient (α), module conductivity (KM) and module 

electrical resistance (R), leading to the calculation of the thermoelectric figure of merit (Z). This 

approach is concerned with the fundamental thermoelectric material properties and their efficiency in 

TEM operation. The second approach is considered a more top level view of TEM application and is 
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concerned with measuring the performance characteristics [6-9] for TEMs which can be used 

determine the suitability of a device for particular operating conditions. The relevant performance 

characteristics are the temperature difference across the device, (Th - Tc = ∆T), and heat pumped from 

the cold side of the module, (Qc), both of which are a function of the current (I) through the TEM. It is 

the latter approach which is pursued in this study to determine the suitability of µTEMs for use in PIC 

applications. Problems exist however, preventing the use of conventional TEM characterisation 

methods, chief among them being the low compressive load bearing capacity of µTEMs (~0.5N) 

compared to conventional TEMs (~100N). Most characterisation methods [2-9] rely on compressing 

the TEM between a heat source and sink in order to measure the characteristics of the device. Methods 

which obviate the need for contact with the upper surface of the µTEMs avoid potential damage to the 

devices while providing relevant performance data. To this end, an experimental setup is developed in 

this paper which utilizes an infra-red (IR) heating element to deliver heat to the µTEMs and a 

calorimeter to quantify the heat pumped through them. It is proposed that this novel method of 

characterisation be proven on macro scale TEMs and compared to existing standards as part of an 

overall body of work investigating the suitability of µTEMs for use in photonics packaging. 

The objective of this paper is to accurately characterise the thermal performance of a TEM using 

contactless heat application in the form of an IR source. The method is subjected to an uncertainty 

analysis and is benchmarked using quoted performance data from the manufacturer. The outcome is 

the demonstration of a novel characterisation method for TEMs which does not require thermal 

contact with the device. 

2.  Experimentation 

An experimental characterisation setup, illustrated in figure 1, was devised to deliver heat to the upper 

surface of a test TEM in a contactless fashion via an IR heat source, while measuring the heat pumped 

through the device (Qc) using a calorimeter and temperature difference across it (ΔT) with an IR 

temperature sensor and thermistors. The setup was placed in a vacuum to eliminate condensation on 

the upper TEM surface at low temperatures and to minimise losses due to convection. This section 

details the components of the experimental apparatus assembly and test procedure. An analysis of 

experimental measurement and uncertainty is discussed in section 3, data reduction. 

 

              
Figure 1. Schematic of contactless characterisation apparatus  
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2.1 Apparatus 

A calorimeter was machined to the dimensions of 15 x 15 x 40mm with a base of 30 x 30 x 5mm 

using oxygen free copper (395 W/m K). Four 0.82mm holes were drilled 3mm deep at 5, 15, 25 and 

35mm from the surface in which were embedded four 0.8mm diameter, 1.2mm long, 5kΩ Epcos 

B57540G502F thermistors in order to measure the temperature gradient along the length of the 

calorimeter. Temperature measurements from the embedded thermistors were recorded using Labview 

software. From this temperature gradient, the heat transfer from (Qh), and temperature of (Th), the 

lower surface of the TEM, referred to as the hot side, was determined. The upper face of the copper 

calorimeter was polished to a mirror finish ensuring that planarity was maintained. Polyurethane foam 

insulation (0.035 W/m K) was placed around the calorimeter to minimise thermal losses. The copper 

calorimeter was placed on a secondary TEM, European Thermodynamics model number ET-241-14-

15, in order to hold Th at 25°C (298K) via PID control using Labview software. This was then 

mounted on a water cooled aluminium block with water circulated at 10°C by a Lauda E100 water 

bath.  All interfacing surfaces were coated with a thin layer of Electrolube HTSP heat transfer 

compound to reduce thermal resistance at the interfaces. 

Benchmarking tests were carried out on a Multicomp MCPF-031-10-25 single stage TEM of 

dimensions 15 x 15 x 4.8mm. The upper surface of the TEM, referred to as the cold side, was coated 

with a 20µm layer of matte black paint to increase the IR absorptivity of the ceramic surface. The test 

TEM was fixed in place by a spring clamping mechanism. Polycarbonate sheet, 5mm thick, was 

machined to hold the TEM at each of the four corners, leaving a minimal area of the TEM surface in 

contact with the clamp and almost the entire face of the TEM exposed. The clamp was fixed to two 

spring loaded stainless steel rods which applied the downward force. Two steel springs, each 2.5kN/m 

stiffness, applied a minimum of 50N downwards force. This imposed a pressure of 222kPa over the 

area of the test TEM to minimise interfacial thermal resistance.  

The contactless heat source for the apparatus was a 125W Ceramicx IR quarter flat ceramic heater 

which was fixed 45mm above the test TEM using steel guide rods and heat resistant rubber rings in 

order to adjust its height. The heater was connected to a variable power source in order to adjust the 

heat supplied to the test TEM. Low emissivity (< 0.1) aluminium foil was used where appropriate to 

reduce stray radiation heat transfer from the heater to the calorimeter and electrical wires within the 

bell jar. Temperature on the cold side of the module (Tc) was measured by a Raytek MI3 miniature IR 

sensor with close focus sensing head targeting a spot size of 1mm
2
 on the centre of the TEM surface. 

The temperature reading was processed and recorded by Raytek’s Data Temp Multidrop software. The 

sensor was positioned using a specially designed mounting bracket machined in polycarbonate, which 

was angled to the precise angle of view and distance from the test surface to produce a 1mm
2
 spot size 

for temperature measurement. Due to the proximity of the miniature IR sensor to the heater, steps were 

taken to prevent the sensing head from heating up excessively. To this end, a water-cooled aluminium 

jacket was machined and placed around the sensing head, with water circulated through it by the water 

bath at a temperature of 10°C.   

Constant current was conveyed to the TEM under test using a TTi QL355TP power supply, with 

measurements of voltage and current taken using certified calibrated Fluke 45 and Fluke 37 

multimeters respectively. Voltage measurements were taken across the test device as close as possible 

to the positive and negative terminals to minimise uncertainty attributed to resistance in the electrical 

wires. The experimental setup was placed on an aluminium baseplate 380mm in diameter and covered 

by a glass bell jar 320mm in diameter and 360mm in height. This was evacuated to an absolute 

vacuum of approximately 400Pa, the lowest achievable vacuum for this setup using a PVR PHV-5 

vacuum pump. At this vacuum, moisture is removed from the air preventing condensation build up on 

the upper TEM surface at low temperatures. The purpose of this was to prevent moisture in the air 

condensing on the cold side surface of the TEM at low temperatures and to reduce convective losses.  

Vacuum rated water fittings were used to supply the water cooled plate and IR sensor cooling jacket 

with water from the water bath. Electrical power supply wires and sensing wires were connected 

across the aluminium base plate by vacuum rated electrical fittings with connectors on both sides. 

Eurotherm Seminar 102: Thermal Management of Electronic Systems IOP Publishing
Journal of Physics: Conference Series 525 (2014) 012021 doi:10.1088/1742-6596/525/1/012021

3



 

 

 

 

 

 

Vacuum losses were reduced by using a rubber sealing ring around the bottom of the bell jar and Dow 

Corning high vacuum silicone grease. 

Having described the experimental apparatus in detail, the experimental procedure is outlined in 

the following subsection. 

 

2.2 Test procedure  

The objective of the test procedure was to benchmark the apparatus using a commercially available 

TEM. According to the data sheet provided by the manufacturer, the test conditions for the quoted data 

were for Th maintained at 25°C over a current range of 0.4A – 2.0A in steps of 0.4A, using the AC four 

terminal method [1]. In order to measure the thermal performance characteristics of the TEM using the 

contactless apparatus detailed above, the following test procedure was developed to be highly 

repeatable while minimising areas of variance and possible uncertainty:  

 

• The water bath was switched on one hour in advance of each test to allow the water to cool 

from room temperature to the test condition of 10°C and to enable the water cooled plate and 

IR sensor jacket to reach steady state. 

• The test TEM was fitted in place on the upper surface of the calorimeter with a thin layer of 

heat transfer compound on the contact surface. The spring loaded clamping mechanism was 

then applied to hold it in place. 

• The miniature IR sensor was positioned using its custom mounting bracket. Positional 

repeatability was ensured using physical stops to place the bracket.   

• The IR heater was then put in place above the test TEM surface. Initially the heater remained 

off for the case of minimum heat flow, 0W. 

• The bell jar was then placed over the apparatus and sealed to the vacuum plate. The vacuum 

release valve was then closed and the vacuum pump was switched on. 

• The test TEM was powered with a constant current set to 0.4A. The system was allowed to 

reach steady state with Th maintained at 25°C; on average this took between 15 to 20 minutes.  

• Electrical measurements of TEM voltage and current were then taken. 

• Cold side temperature and the temperature gradient along the calorimeter were recorded and 

averaged over a five minute interval. 

• Test TEM current was then raised in steps of 0.4A as far as 2A, allowing each step to reach 

steady state. Electrical and temperature measurements were again recorded for each current 

step. 

• Upon collecting a full set of data for the current range, the heater power was then increased in 

steps of 20W up to a maximum of 120W. Increasing the heater power also increased the time 

required to reach steady state thermally, when compared to adjusting TEM current, requiring 

approximately 45 minutes.  

• The procedure was repeated for each current setting until a complete set of data was attained 

for all heater power settings.  

 

The experimental measurements were ultimately used to compare the TEM performance 

characteristics provided by the manufacturer and those obtained using the contactless apparatus. In 

order to use the data collected, a formal data reduction and uncertainty analysis was required, and this 

is detailed below in section 3.  

3.  Data reduction 

Presented in this section are all the calculated variables derived from experimental data with each of 

their related primary variables. Their relevance to the overall TEM characterisation is discussed to 

give a better understanding of the process.  
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To compare the thermal performance of TEMs, the established method [7-10], is to plot measures 

of temperature difference generated across the module (∆T) versus heat pumped through the module 

(Qc) for a given value of current (I) through the device. Qc is defined in equation 1, where Qh is the 

total heat flow through the calorimeter from the hot side of the TEM and P is the electrical power 

supplied to the module:  

 

�� = �� − �																																																																									(1) 
 

Heat flow through the calorimeter, presented in equation 2, is determined using a best 

approximation least squares regression fit based on thermistor temperature and spatial positioning, 

(dTt/dx) and multiplying by the thermal conductivity (K) and surface area (A) of the copper 

calorimeter:    

 

�� = ��

��


�
																																																																								(2) 

 

Electrical power delivered to the module is measured as the product of TEM voltage (V) times 

TEM current (I) and is seen in equation 3: 

� = ��																																																																																		(3) 
 

Temperature difference across the module, seen in equation 4, is the calculation of difference 

between the constant temperature maintained at the hot side of the module and the temperature 

measured by the IR sensor on the cold side of the module:  

 

�� = �� − �� 																																																																									(4) 
 

The hot side temperature of the TEM is again determined using a best approximation least squares 

regression fit similar to Qh, which is in turn used to calculate the temperature intercept at the surface of 

the calorimeter [12]. This is computed in real time during the test using Labview software. The cold 

side temperature is a direct measurement taken by the IR sensor over a spot size of 1mm
2
 at the centre 

of the upper TEM surface.    
An uncertainty analysis was also employed in order to quantify the uncertainties associated with 

each primary measurement and its effect on the calculated properties in the TEM performance 

characteristics. Each measured quantity and its uncertainty are listed in table 1.   

 
Table 1. Uncertainty in measured quantities 

Measured Quantities Uncertainty 

Thermistor temperature (Tt) ±0.005°C 

Thermistor location (x) ±50µm 

Calorimeter area (A) ±1.2825x10
-6

m
2
 

Calorimeter thermal conductivity (K) ±5% (W/m K) 

IR sensor temperature (Tc) ±0.5°C 

TEM Current (I) ±0.01A for 0.3A-3A 

TEM Voltage (V) ±1x10
-4

V for 1V-3V 

   

 

Many of the measured quantities listed in table 1 were subjected to calibration, and various other 

steps in order to minimise uncertainty.  
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• The thermistors used were calibrated, while connected through the vacuum fittings, in the 

Lauda E100 water bath using a Fluke 1504 reference thermistor, for a temperature range of 

15 — 40°C.  

• The location of each thermistor along the length of the calorimeter was found using a 

digital microscope for an optical measurement, which determined the thermistor position to 

a resolution of 50µm. The area of the calorimeter surface was found in a similar manner.  

• Goodfellow supplied the copper used in the calorimeter with an uncertainty of ±5% in the 

material’s thermal conductivity. This value is the largest contributor to uncertainty in heat 

flow measurements. The author intends to independently characterise the material for 

further work. 

• The cold side temperature measurement is a non-contact IR measurement which was 

rigorously calibrated in-situ under replicated test conditions. For each increase in heater 

power setting, the increase in reflected radiation is accounted for in the temperature 

measurement of the sensor. This was achieved using a copper meter bar with its surface 

painted with a 20µm layer of black paint, consistent with test TEM, with two 1.2mm 

diameter, 2mm long,  Epcos B57550G502F thermistors calibrated for a temperature range 

of -30°C to 30°C to a certified accuracy of 0.05°C, embedded 2mm from the surface. The 

temperature read by the IR sensor was compared to the actual reading of the thermistors in 

the meter bar, for a range of emissivity values. The temperature range was established on 

the surface of the meter bar using the secondary TEM to raise and lower temperature. 

Limiting the accuracy of the IR sensor is the ±0.5°C repeatability quoted in the device data 

sheet.  

• Current through the test TEM and voltage across it, were measured using certified 

calibrated meters. 

 Knowing the accuracy of the measured values, the uncertainties for all calculated values were 

resolved using the Kline and McClintock method [11] for determining uncertainty in single sample 

experiments. An example of the maximum uncertainty for each calculated value is displayed in table 

2. 
Table 2. Maximum uncertainties for calculated quantities 

Calculated Quantities Maximum Uncertainty 

Power (P) ±1.25% 

Heat flow from hot side (Qh) ±5% 

Heat flow from cold side (Qc) ±5.15% 

Hot side temperature (Th) ±0.25°C 

Temperature difference (ΔT) ±0.56°C 

  

 

This section has discussed the calculated and measured quantities associated with the thermal 

performance characterisation of TEMs. The uncertainty of measured and calculated quantities were 

also discussed with uncertainty values given for the relevant measurements in the experimental testing. 

The data collected is presented and discussed in section 4. 

4.  Results and discussion 

The following results were obtained using the Multicomp MCPF-031-10-25 TEM in a working 

vacuum of 400Pa. Results are presented and discussed in terms of heat removed from the cold side of 

the TEM, the temperature difference across it and electrical current through the module. The data is 

discussed in three subsections for purposes of clarity, beginning with the overall TEM performance 

characteristics. The special cases of maximum TEM performance, heat pumping from the cold side 

and temperature difference, are then discussed.  
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4.1 TEM performance characteristics  

Determining the performance characteristics of the test TEM is the primary objective of this study. 

Figure 2 plots the experimental results of performance in terms of temperature difference as a function 

of cold side heat pumping for the TEM current range of 0.4A – 2.0A. Included on the plot are the 

manufacturer’s performance curves for the same TEM current to provide a direct comparison. Error 

bars for cold side heat pumping and temperature difference illustrate the relative uncertainty 

associated with both measurements. 

 
Figure 2. Temperature difference as a function of cold side heat pumping and TEM current, measured data 

and manufacturer’s characteristic curves 

Initial impressions from figure 2 confirm the experimental data displayed takes the characteristic 

linear form expected for thermoelectric performance characteristics seen in [7-10]. There is good 

agreement between experimental and quoted characteristic behaviour, with slight discrepancies at the 

highest and lowest current values. Higher current values, 1.6A and 2.0A, show good agreement at 

higher temperature difference but the data trends towards an under-prediction of cold side heat 

pumping at lower temperature differences, when compared to the manufacturer’s characteristic curves. 

The differences in trends, especially at lower and higher currents, can be attributed to a fundamental 

difference in the characterisation method used by the manufacturer. The AC four terminal method, 

used by Multicomp, is a material level characterisation using electrical measurements to characterise 

the bulk thermoelectric material which does not fully account for the thermal contribution of the 

ceramic substrates sandwiching the thermoelectric material and the electrical connections between the 

thermoelectric pairs in the module. The overall data fit, however, is considered within the expected 

range. 

 Areas of particular interest in figure 2 are the cases of maximum TEM performance. These occur 

at the intersection of the data with the x and y axes, with maximum temperature difference at the y 

intercept where heat pumping is zero and maximum cold side heat pumping at the x intercept where 
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temperature difference is zero. For the latter case, only the data sets of lower current values 0.4A and 

0.8A cross the x-axis. This is due to the IR heater power limit of 125W, with insufficient heat being 

supplied to increase the temperature of the upper TEM surface at higher currents. Higher heater power 

would enable values for temperature difference to approach zero, however this is beyond the range 

required for the overall objective of the work to characterise µTEMs which have lower heat pumping 

capabilities and lower temperature differences. It is deemed appropriate for validation purposes to 

extrapolate a best fit trend line from the data for the x-axis intercept. For the case of maximum 

temperature difference, the data set, again, does not cross the y-axis. This is due to contributions of 

radiation heat transfer from surroundings within the evacuated bell jar to the surface of the TEM 

providing heat for the cold side to pump. It is difficult in this configuration to completely eliminate 

heat flow from the cold side so an extrapolation of a best fit trend line is necessary to establish the y-

axis intercept and maximum temperature difference. These cases of maximum performance are 

presented in the following sub-sections. 

 

4.2 Maximum heat pumping from TEM cold side   

The case of maximum heat pumping from the cold side occurs when the temperature difference 

across the TEM is zero. As explained in subsection 4.1, the data presented in figure 3 is derived from 

extrapolated least squares fits of each current setting to the point of the x-axis intercept. Figure 3 plots 

cold side heat pumping of the test TEM at zero temperature difference across the module, for the 

current range of 0.4A – 2.0A. Again, experimental and manufacturer’s data are compared.  

 
Figure 3. Heat pumped from cold side of TEM as a function of current for the zero temperature difference 

across module case 

Direct comparison of experimental and manufacturer’s data for maximum cold side heat pumping 

for TEM current shows good overall alignment. Slight differences are evident, however, at lowest and 

highest current values, with the result of marginal difference in trends among measured and quoted 

data. This is most likely accounted for by the difference in characterisation methods mentioned 

previously, which is undesirable in a benchmarking process. Despite this, there is good agreement 

between experimental and quoted data for the current range of 0.4A – 1.2A, with a slightly higher 
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calculation of heat pumping seen for 0.4A of 0.2W. Lower values of heat pumping at the higher values 

of current 1.6A and 2.0A, both amount to a difference of 0.23W from manufacturer’s quoted data. 

This represents a 5.2% discrepancy at the maximum heat pumping value at 2.0A, falling marginally 

outside maximum uncertainty for cold side heat pumping established in section 3. This reflects the 

expected thermal losses associated with interfacing materials in the TEM, which are approximated in 

the method used by the manufacturer.  

 

4.3 Maximum temperature difference across TEM 

 The case of maximum temperature difference across the TEM occurs when heat pumping from the 

cold side is zero. As explained in subsection 4.1, the data presented in figure 4 is derived from 

extrapolated least squares fits of each current setting to the point of the y-axis intercept. Figure 4 plots 

temperature difference across the test TEM versus the current through the module for the condition of 

zero heat flow through the module. This case represents the maximum temperature difference 

achievable for each given current value, which is of importance in optical telecommunications 

applications where the control temperature required can be significantly below the allowable sink 

temperature. Manufacturer’s quoted data is compared to the experimental data. 

 
Figure 4. Temperature difference across TEM as a function of current for the zero cold side heat pumping 

case 

Experimental data for temperature difference compare very well with quoted values by the 

manufacturer. All experimental data points fall less than 3°C from the manufacturer’s data series, with 

that value decreasing for increasing current values. Maximum temperature difference measured at 

2.0A by the contactless apparatus falls within 0.9°C of that claimed by the manufacturer. Considering 

that the Multicomp characterisation method measure temperature difference across the bulk material 

this is an encouraging outcome that, again, gives confidence in the experimental apparatus and 

method. Having detailed and discussed the experimental results, the conclusions drawn and further 

work will be presented. 
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5.  Conclusions 

In this paper, a novel contactless method for the characterisation of thermoelectric modules (TEMs) is 

presented. The method was benchmarked using a commercially available TEM of dimensions 15 x 15 

x 4.8mm. Measured data from the experimental apparatus is compared to manufacturer’s data sheets, 

with a view to proving the merit of the novel concept in order to implement the method in a 

characterisation study of commercially available µTEMs. The following conclusions apply: 

• Overall data comparison with manufacturer performance curves yields good agreement, 

with slight discrepancies evident due to difference in characterisation method. 

• The novel contactless characterisation method yields maximum heat pumping from the 

cold side of the TEM within 5.2% of the manufacturer’s quoted data and maximum 

temperature difference across the TEM within 0.9°C.  

• Maximum uncertainty associated with Qc and ΔT, was calculated at ±5.15% and ±0.27°C 

respectively. 

A contactless method for the characterisation of thermoelectrics was benchmarked successfully 

allowing further work on µTEMs to proceed with confidence. Future work will include minor 

adaptations of the apparatus for the measurement of µTEM array performance as well as efforts to 

further minimise uncertainty associated with primary and calculated measurements, including the 

characterisation of oxygen free copper to reduce uncertainty in its thermal conductivity.  
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