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Abstract. The main goal of this study is the comparison of the near wake generated by
an actuator line immersed in three different flows. A hybrid RANS-LES method is used
to analyze the behaviour of the near wake in an atmospheric boundary layer. Then these
results are compared to two idealized flow situations commonly found in the literature, such as
irrotational flow and homogenous isotropic turbulence. In order to achieve this, a validation of
the homogenous isotropic turbulence is conducted. The simulation results and the generated
turbulence are compared with respect to the turbulence intensity and the integral length scale
of the flow field. Finally to visualise the impact of the different flow conditions on the near wake
of a wind turbine, the mean velocities, Reynolds stresses and energy spectra are compared.

1. Introduction
Wind turbine wakes play an essential role in the design of wind farms. They have a significant
impact on the energy output and the blades of the downstream turbines. Despite of their
importance, they are not yet fully understood. Hence this study focuses on the characterization
of the wake of a wind turbine immersed in an atmospheric boundary layer (ABL) flow. The
zone of interest is the near wake, where the structure of the helicoidal tip vortices created by
the rotating blades are still clearly noticeable. This zone can extend up to two rotor diameter
downstream of the turbine [1] [2], hence the present study focuses on this region.

In order to conduct this study, three cases are set up. The first case has an irrotational
inflow and represents a wind flow with zero turbulence intensity (TI). The second case exhibits
a homogeneous isotropic turbulence, therefore it has a uniform turbulence intensity greater than
zero. The third case represents an ABL flow, thus a sheared, turbulent flow. The results on the
third case are used as a reference, hence its bulk velocity at the rotor plane Ub is imposed in the
first and second cases. Also its mean turbulence intensity is used for generating the turbulence
field for the second case. The examined turbine will be the NREL 5MW reference turbine [3].

First there is a brief discussion on the models used: the actuator line method, synthetic
turbulence, and a hybrid turbulence method for modelling the ABL. Afterwards the numerical
concepts and case details are elaborated and the results are shown. Finally a short conclusion
and suggestions for future work are summarized.
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2. Modelling concepts
For a LES simulation of the wind flow around the wind turbine the filtered incompressible
Navier-Stokes equations in cartesian coordinates are used

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+

∂

∂xj

[
(ν + νt)

(
∂ui
∂xj

+
∂uj
∂xi

)]
+
Fi
ρ

(1)

∂ui
∂xi

= 0 (2)

whereas the turbulence effects are modelled by a turbulent eddy viscosity νt, and Fi/ρ can
represent any external forcing (i.e. driving pressure-gradient, turbine forces, Coriolis force, etc.).
The closure is achieved by the classic Smagorinsky model with a constant model coefficient CS of
0.167 in the first two cases and by a hybrid method in the third case (described in subsection 2.3).

2.1. Actuator line method
In order to represent the effect of the rotating blades in the near wake, the actuator line
method [4] is chosen. Hereby the forces associated with the rotating blades are calculated
by means of the velocity at the blade point without the blade induced component and the airfoil
data such as the lift and drag coefficient for a specific Reynolds number and angle of attack. In
order to avoid spurious oscillations in the numerical solution when introducing a discrete jump
in the source term Fi/ρ in Equation (1), a three dimensional Gaussian distribution
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is used where r is the distance from the point of the force and the point inside the Gaussian
“blob”. The standard deviation σ is set to be 2∆x as compromise between velocity oscillations
and the regularization of the forces [5]. The smallest cell size ∆x is found in the vicinity of the
rotor as described later and it corresponds to D/22 for all three cases with D representing the
rotor diameter.

2.2. Homogeneous isotropic turbulence
A synthetic velocity field representing homogeneous isotropic turbulence based on the von-
Kármán energy spectrum

E(k) = CL5/3 L4k4

(1 + L2k2)17/6
(4)

is obtained by using the Mann algorithm[6]. The one-point u-spectrum is given as

Fuu,k(k1) = CL5/3 1

(1 + L2k21)5/6
(5)

with C as an arbitrary constant since the resulting velocity field is scaled in order to match
the desired turbulence intensity. The length scale L can be used as tuning parameter for
obtaining the desired integral length scale L and k1 is the wavenumber in the streamwise
direction. The implementation used here was presented in [7] and adapted by its authors to
produce homogeneous isotropic turbulence.
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Table 1. Turbulence model constants.

k − ω SST constants for ABL flows [11]:

β1 = 0.0236 β2 = 0.0276 κ = 0.40 σk1 = 0.85 σk2 = 1.0 β∗ = 0.03
σω1 = 0.5 σω2 = 0.67 a1 = 0.31 γ1 = 0.3255 γ2 = 0.3011 c1 = 10.0

SIDDES constants [10] [12]:

Ck−ε = 0.61 Ck−ω = 0.78 Cw = 0.15 Cdt1 = 20.0 Cdt2 = 3.0 Cl = 5.0
Ct = 1.87

2.3. Hybrid turbulence model
The computational cost for an accurate LES simulation close the a solid surface can be rather
high. Hybrid turbulence models have been developed to try to alleviate those computational
constraints. The hybrid model in this work is based on the Detached Eddy-Simulation (DES)
approach. It uses a RANS model to solve the flow in the vicinity of the wall, while a LES
approach is used to model the rest of the flow behaviour.

The filtered Navier-Stokes equations (1) and (2) are also employed. In the RANS regions,
the term ui represents the time-average velocity, while in the LES regions this term refers to the
filtered velocity [8]. The pressure term is treated in the same manner. Additionally νt represents
the turbulent viscosity or the subfilter viscosity in the RANS and LES regions respectively.

The hybrid model employs the specific turbulent kinetic energy k and the specific dissipation
rate ω = ε/(β∗k) equations of the RANS model k − ω SST [9]1. However, the dissipation term
ε in the k equation is expressed as k3/2/l̃ to introduce a universal length scale l̃ = k1/2/(β∗ω).
The resulting closure equations are [10]
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Finally the eddy-viscosity is determined by

νt =
a1k

max(a1ω,SF2)
. (8)

regardless if it is a RANS or a LES zone being solved. Here S =
√
SijSij is the characteristic

strain rate, Pk is the production term, and F1 and F2 are blending functions. Also a1, β, γ, σk
and σω are model constants. These constants, collectively represented as φ, are calculated by
φ = F1φ1 + (1− F1)φ2. Table 1 summarizes all the required constants for the proposed model.

The local value of l̃ regulates if the k and ω equations are solved in RANS or LES mode.
This universal length scale l̃ is a function of the RANS and LES length scales, which are defined
as

lRANS =

√
k

β∗ω
lLES = CDES∆ (9)

1 As mention in http://turbmodels.larc.nasa.gov/sst.html a typographical error exists in the turbulent dissipation
equation (Eq. 1) of this article. Future references use the corrected equation (e.g. [10]).
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(from [12] and [13] respectively). Additionally

CDES = (1− F1)Ck−ε + F1Ck−ω (10)

where β∗ and F1 are the model constant and the blending function from k−ω SST respectively,
and ∆ is the filter width [12]. For the DES model, the universal length scale is defined as
∆DES = min(lRANS , lLES). This turbulence model exhibits two important drawbacks for certain
type of simulations. The first issue named grid-induced separation arises for certain type of
grids [14]; while the log-layer mismatch (LLM) issue originates when the model is used as a
wall-modelled LES [15]. It is important to mention that the LLM mismatch is particularly
problematic for all ABL simulations. For this reason the Simplified Improved Delayed Detached
Eddy-Simulation (SIDDES) model, which is an enhanced version of DES, is used for this analysis.
The SIDDES length scale is defined as

l̃SIDDES = f̃d lRANS + (1− f̃d)lLES (11)

where f̃d is an empirical delay function, which together with the definition of
∆SIDDES = min[max(Cwdw,Cwhmax,hwn),hmax] corrects for the LLM. Here, hmax is the maxi-
mum edge length of the cell, dw is the distance to the nearest wall and hwn is the grid step in
the wall normal direction [16]. A more detailed explanation about our implementation of the
hybrid model is not relevant for the objectives of this work.2

Using the k − ω SST-SIDDES model, for the first two cases its somewhat delicate since the
definition of ∆SIDDES is based on a distance to a non-existent solid wall. Consequently, the
k − ω SST-DES was studied. DES was anticipated to be a good candidate for simulating the
first two cases because its length scale does not depend on the distance to a solid wall, and no
log-layer mismatch is expected. Nevertheless the lack of turbulent content (on the irrotational
flow case) poses another challenge for those types of hybrid models. It has been established that
the lack of turbulent content in a hybrid model should automatically reduce the simulation to a
pure RANS solution [16]. On the other hand, it has been shown that certain hybrid simulation
without turbulent content do not always reduce to a RANS solution [15].

The uniform irrotational flow case was analyzed using k − ω SST-DES. Yet, it was observed
that this simulation did not yield the same result as a pure RANS solution. Due to these
particular disadvantages, it was thought that Smagorinsky proves to be a more robust model for
the first two mentioned cases. However, since it has been shown that the hybrid model presents
a “Smagorinsky-like” behaviour 2 the direct comparison of the wakes resulting from the three
cases is well-founded.

3. Numerical method
3.1. Framework
The study is realized within the open-source framework OpenFOAM3 together with the SOWFA4

project, which contains an implementation of the ALM as described in [5]. A more detailed
explanation for the implementation of the method can be found in [17]. The hybrid turbulence
model was implemented by the authors.

2 A thorough explanation will be submitted by M. Bautista et al. as “A hybrid model adapted for wind energy
applications. Flat terrain analysis.” in the near future
3 Copyright 2004-2013 OpenCFD Ltd (ESI Group), version 2.2.2.
4 NWTC Design Codes (SOWFA by Matt Churchfield and Sang Lee)
http://wind.nrel.gov/designcodes/simulators/SOWFA/.
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Figure 1. Mesh for case 1 & 2 Figure 2. Mesh for case 3

3.2. Case setup
Since the first two cases represent a free stream flow, their meshes are identical. The overall
dimensions are Lx,0 = 2D upstream and Lx,1 = 6D downstream of the rotor plane, while the
lateral extents are Ly = Lz = 4D in each direction as shown schematically in Figure 1. Cubical
cells are used in the vicinity of the rotor within a cubical volume with a edge length 2D centred
at the hub (grey box in Figure 1 and Figure 2). The cells are stretched towards the boundaries,
by keeping the highest aspect ratio, occurring near the outlet, under a value of 10.

In order to simulate the ABL on the third case, the bottom region of the domain is reduced
to the hub height H and a cell stretching is applied to obtain a recommended dimensionless
wall distance z+ = u∗z/ν ≤ 1 [18] with a friction velocity u∗ and a molecular viscosity ν. For
this reason, very high aspect ratio cells are created close to the ground. This is the price to
pay when using a hybrid model with k − ω SST for simulating an ABL flow. By examining the
results of the third case a z+ ≈ 0.8 is obtained.

To make the three cases comparable, the same Reynolds number is chosen withReD = UbD/ν,
whereas Ub is the bulk velocity in the rotor plane. This value is extracted from the third case
and imposed as mean velocity on the first two cases. For generating the synthetic turbulence in
case 2, the mean turbulence intensity (TI) of the rotor plane from case 3 is used as constraint.
The Reynolds number for all three cases is ReD ≈ 63 · 106.

A Dirichlet condition (U = {Ub, 0, 0}) at the inlet and a Neumann condition (∂U/∂n = 0)
at the sides are chosen as the boundary conditions for the velocity on the first case. For the
second case the velocities of the synthetic turbulence field are projected onto the inlet and sides
of domain by using a Dirichlet condition. For the third case a precursor simulation is done to
obtain a fully developed ABL flow, which is then projected at the inlet of the third case using
a Dirichlet condition. The flow of the third case is driven by a pressure gradient inserted as a
source term in the momentum equation

Fi
ρ

=
〈∂p
∂x

〉
= − u∗2

H + 2D
(12)

with the friction velocity u∗ =
√
τw/ρ. For the ground velocity a Dirichlet condition (U = 0) is

used while the values of k|w and ω|w are defined based on the roughness extension proposed by
Knopp et al. [18]. For the atmospheric flow this roughness extension can be simplified to

k|w,ABL =
u∗2√
β∗

ω|w,ABL =
u∗√
β∗κz0

(13)
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On the top of the domain a stress free condition and on the sides a Neumann condition
(∂/∂n = 0) is set for all variables. On the outlet of all three cases a Neumann condition
(∂/∂n = 0) is imposed.

The spatial resolution in the uniform region around the rotor is chosen to be ∆x = D/22.
The actuator line needs a maximum time step of ∆x/Utip with the tip speed of the rotating
blade, which causes the simulations to run on a very low Courant number.

4. Results
In the second case the mean turbulence intensity at rotor position, so 2D after the inlet,
is reduced by about 14% relative to the reference value from the synthetic field, which can
be attributed to dissipation effects inside the computational domain. Another parameter to
validate is the integral time scale T . To determine T the autocorrelation ρ of the time-serie
of the streamwise velocity fluctuations is analyzed. T is determined where ρ(t = T ) equals
1/e as shown in Figure 3. As both curves almost intersect at that point, the integral time
scale with respect to one longitudinal flow-through-time T /T is found to be around 0.047 with
T = Lx/Ub as the longitudinal flow-through-time and with Lx as the domain length. The
integral length scale L in respect to the rotor diameter D is therefore L/D = 0.37. This integral
scale is confirmed by looking at the energy spectra of the synthetic and simulated field as shown
in Figure 4 where it is close to the maximum of the spectra f · Fuu. By the same method an
integral time scale of T /T = 0.036 and an integral length scale of L/D = 0.30 is obtained at
the highest tip point in the rotor plane of the ABL flow.

Figure 3. Autocorrelation function of the
streamwise velocity fluctuation u with grey
lines intersecting at (T , 1/e)

Figure 4. Energy spectrum of streamwise
velocity component u with grey solid line
indicating τ/T

In the CFD cases the time series for u are obtained by taking the velocity at fixed points in
the rotor and averaging the resulting spectra and autocorrelation functions. In the case of the
synthetic field, the wavenumber was transformed to a frequency by the help of the mean bulk
velocity Ub, so that f = k ·Ub/(2π). As the velocities of synthetic field are cyclic [6] the Bartlett
method [19] is used for generating the energy spectrum. As this assumption is not valid for the
velocity time series of the simulations, the Welch method [20] is applied in these cases.

In Figure 4 it can be seen, that the synthetic velocity field matches well the analytic expression
of Equation (5) apart from the higher frequencies. When comparing these spectra to the
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Figure 5. Convergence of
normalized power coefficient
cp/cp,ref (black) and turbulence
intensity TI (red).

simulated one in case 2, it can be seen that there is a high dissipation, which causes the energy
spectrum to drop earlier than expected. In order to circumvent this, a higher spatial resolution,
different discretization schemes or different subfilter models could be used. In order to validate
the LES also the inertial range is shown as a trend in Figure 4 by the expression f−2/3. It can
be seen that the simulated spectrum follows this trend for a certain range of frequencies. By
refining the mesh it is expected that this range would extend towards the higher frequencies. The
frequency on the abscissa is scaled by τ which is linked to the smallest eddy that can be resolved
on the computational grid due to the Nyquist-Shannon sampling theorem, so τ = 2∆x/Ub.

The total simulation time for each cases is around seven flow-through-times T in order to let
the flow reach statistical stationarity. In Figure 5 the development of the mean power coefficient
cp normalized by its reference value cp,ref [3] and the turbulence intensity TI =

√
2kres/〈U〉

with kres = 0.5〈ui ui〉 over the runtime are shown. The calculation of the second order statistics
is started later during runtime as first the mean velocity 〈U〉 has to converge. In Figure 5 it can
be seen that the power coefficients for the first two cases converge towards a similar value, which
can be attributed to the blockage effect as the transversal domain length is 4D. By extending
the domain size, the simulated power coefficients approach the reference value. In case 3 the
wake expansion is even more obstructed by the vicinity of the ground and therefore a cp much
higher than the reference value is obtained. When looking at the turbulence intensities it can be
seen that they are also reaching convergence in an oscillating manner. It should be noted, that
the turbulence intensities are not the same for the second and third case as their calculation is
based on the total kres of the whole domain with the presence of a rotor.

When comparing the amount of turbulent kinetic energy of the subfilter scales kSGS and the
resolved turbulent kinetic kres energy of the resolved scales, it can be found that more than 90%
of the turbulent kinetic energy is resolved for case 2. For case 3 it is a bit more complicated,
as in the RANS part in the lower region of the computational domain all turbulent motion is
modelled. By excluding this zone from the comparison it can be observed that more than 80%
of k is resolved.

In Figure 6 it is shown that the symmetric velocity deficit of the mean streamwise velocity
〈U〉 is almost the same for case 1 and 2 in the vicinity of the rotor, while the deficit in the
sheared case is more prominent close to the ground. The wake recovery is quicker in the two
turbulent cases as it can be seen in Figure 7.

When looking at the resolved Reynolds stress in Figure 8 it can be seen that fluctuations in
case 1 are completely dissipated after a distance of x/D = 0.5 behind the rotor. While case
2 exhibits an almost symmetrical profile, there are almost no fluctuations close to the ground
in the third case. This can be explained by the fact that the RANS zone of the hybrid model
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Figure 6. Vertical profile of 〈U〉/Ub at
x/D = 0.5 and y/D = 0

Figure 7. Vertical profile of 〈U〉/Ub at
x/D = 2.0 and y/D = 0

Figure 8. Vertical profile of 〈uu〉/U2
b at

x/D = 0.5 and y/D = 0
Figure 9. Vertical profile of 〈uw〉/U2

b at
x/D = 0.5 and y/D = 0

reaches into the rotor zone. Therefore, there are almost no resolved fluctuations in this area.
A similar behaviour can be observed for the stress 〈uw〉 in Figure 9. For circumventing this
phenomena a higher spatial resolution has to be chosen which would allow the LES zone to
expand closer to the ground.

In order to have a look at the vortex dynamics in the near wake, energy spectra are calculated
at three different points: in the rotor plane without turbine (Figure 10) and with the turbine
(Figure 11), and with the turbine at 0.25D (Figure 12) and at 0.5D (Figure 13) behind the
rotor. In Figure 10 it can be seen that the spectra for case 2 and 3 are very similar although
the ABL case exhibits more energy at higher frequencies. The turbulent kinetic energy for the
irrotational case is so low, so the energy in the spectrum can be attributed to numerical noise.
In Figure 11 a very distinctive energy peak (grey solid line) can be seen at three times the
rotating frequency of the three bladed wind turbine, which clearly shows the passage of a rotor
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Figure 10. Energy spectrum of u without
turbine at x/D = 0, y/D = 0 and z/D = 0.5

Figure 11. Energy spectrum of u with
turbine at x/D = 0, y/D = 0 and z/D = 0.5

Figure 12. Energy spectrum of u with tur-
bine at x/D = 0.25, y/D = 0 and z/D = 0.5

Figure 13. Energy spectrum of u with tur-
bine at x/D = 0.5, y/D = 0 and z/D = 0.5

tip. Further downstream in Figure 12, the energy diminishes while at 0.5D in Figure 13 the
energy at the frequency of the blade passage is almost zero.

5. Conclusion
The comparison study of the near wake of an actuator line immersed in three different flow
situations has been carried out. A crucial aspect was to maintain a certain similarity between
the different cases: irrotational flow, homogenous isotropic turbulent flow and an ABL flow.
Therefore all three cases exhibit the same mean bulk velocity in the rotor plane, while the two
turbulent cases 2 and 3, have also the same mean bulk turbulence intensity.

The simulated homogenous isotropic turbulence (case 2) shows a good agreement with the
generated synthetic field with respect to its turbulence intensity and integral length scale of the
flow at the rotor position. Hence the method of imposing the generated synthetic field as a
boundary condition of the CFD simulation proves to be a valid option for modeling this kind of
flow.

The hybrid RANS-LES model reproduces well the sheared turbulence of an ABL flow.
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Therefore the vertical profiles of the mean streamwise velocity deficit downstream of the rotor
exhibits a strong asymmetry. This is one of the main differences between this case and the two
ideal cases which yield symmetric profiles. However the Reynolds stresses for the turbulent cases
show a certain similarity far away from the ground. There is a weaker resemblance close to the
ground due to the RANS region in the third case.

The energy spectra shows a very good agreement between the turbulent cases 2 and 3.
Meanwhile the level of the turbulent kinetic energy of the irrotational flow is not much greater
than the numerical noise. When introducing the turbine in the flow a distinctive high energy
peak at three times the rotor frequency appears representing the induced velocity field by the
blades. This peak diminishes after only half a rotor diameter.

A finer grid would improve the resolution of the tip vortices and turbulence structures and
would probably push the RANS zone further away from the rotor plane in case 3.
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