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Abstract. The wind force on turbine blades, consisting of a drag and lift component, depends 
nonlinearly on the relative wind velocity. This relative velocity comprises mean wind speed, 
wind speed fluctuations and the structural response velocity. The nonlinear wind excitation 
couples the flap wise and edge wise response of a turbine blade. To analyze this motion 
coupling, an isolated blade is modelled as a continuous cantilever beam and corresponding 
nonlinear expressions for the drag and lift force are defined. After reduction of the model on 
the basis of its principal modes, the nonlinear response up to the second order is derived with 
the help of a Volterra series expansion and the harmonic probing technique. This technique 
allows for response analysis in the frequency domain, via which the combined flap and edge 
wise responses can easily be visualized. As a specific case, the characteristics of the NREL5 
turbine blades are adopted. For both non-operating and operating conditions, blade responses 
in a turbulent wave field, based on a Kaimal spectrum, are determined. The second-order 
responses are shown to cause additional motion coupling, and moreover, are proven not to be 
negligible straightforwardly.  

1.  Introduction 
The design of support structures for offshore wind turbines requires detailed knowledge on the stress 
variations due to ongoing aerodynamic and hydrodynamic forcing. The accumulated fatigue damage 
that results from both force processes limits the structural life-time. The stochastic character of both 
forces, as well as the nonlinear flow-force-structure interaction relations render the estimation of the 
fatigue life-time difficult. A key concept in the prediction of the stress variations during the structural 
life-time is the aerodynamic damping of the turbine rotor. This damping represents, whenever positive, 
a resisting force as a function of the structural velocity. Its magnitude depends on the operational state 
of the turbine and the directionality of the forces. 

Many studies have been devoted to the understanding of the damping effect of the rotor, largely 
because the damping may turn negative, inducing aeroelastic instabilities. An early contribution by 
Petersen et al. [1] presented linearized models for quasi-steady aerodynamics and investigated the 
coupling between blade and turbine vibrations. Further development of aeroelastic models, 
predominantly focussing on dynamic stall, has been published by Rasmussen et al. [2] and Hansen et 
al. [3]. A specific topic that has been studied extensively is the damping of edge wise rotor whirling 
modes, since models and measurements showed different damping ratios for forward and backward 
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edge wise whirling modes [4-8]. Hansen [8] not only addressed stall-induced vibrations for stall-
regulated turbines, but also classical flutter for pitch-regulated turbines. Damping ratios for global 
turbine modes have been determined in [9-11]. 

A common approach in analyzing the aerodynamic rotor damping starts with the definition of a 
nonlinear aeroelastic wind turbine model. After linearizing about steady-state operational conditions, 
the model is reformulated in terms of the modal state-space, coupling structural and aerodynamic 
degrees of freedom. Application of the Coleman transformation enables the derivation of collective 
non-periodic rotor modes together with the main lateral and torsional turbine modes. Damping ratios 
per dynamic mode are identified with the help of an eigenanalysis of the resulting model. 

The Morison equation and the Kutta-Joukowski theorem relate the drag and lift force on a turbine 
blade nonlinearly to the effective wind flow. This effective wind flow comprises the unsteady wind 
velocity, which can be defined in terms of mean wind velocity and wake turbulence, and the structural 
response velocity, via which the aerodynamic damping can be expressed. This definition of the drag 
and lift force reveals the nonlinear coupling between the flap and edge wise blade excitations and the 
structural response velocities. By linearizing the force formulations, nonlinear coupling and cross-
coupling terms are neglected. 

In this paper, the nonlinear blade motion, coupled via the drag and lift force, is analyzed for an 
isolated rotating blade. A continuous blade model is reduced on the basis of its primary undamped 
modes. After adoption of the characteristics of the pitch-regulated NREL5 5 MW turbine blade 
characteristics [12] and the definition of a turbulence field, the dynamic response is determined in the 
frequency domain by means of Volterra series expansion and the harmonic probing technique. Besides 
the linear forcing terms, also the quadratic contributions are accounted for. The analysis in the 
frequency domain demonstrates the coupled response associated with the excited frequencies, while 
the excitation-related damping can easily be identified.  

2.  Model description 

2.1.  Blade model 
A turbine blade is modelled as a cantilever beam of length R, rigidly fixed to the hub (see figure 1). 
The beam is described within a rotating frame of reference. The r axis represents the longitudinal axis 
of the undeformed blade, where the origin coincides with the point of rotation. 

  
 

Figure 1. Blade model. Figure 2. Blade section exposed 
to wind velocity vector. 

Figure 3. Lift and drag 
definitions. 

Figure 2 presents a cross section of the blade, in which the x and y axes coincide with its principal 
axes. The global XY coordinate system is adopted to describe flap and edge wise blade motion; the X 
axis coincides with the plane of rotation and the Y axis is directed normal to this plane. The angle β 
describes the angle between the local x and the global X axis and is composed of both fixed blade twist 
and varying blade pitch. The blade twist generally varies along its longitudinal axis. Here, the blade 
twist is taken constant, implying that the angle β can be adopted to refer to blade pitch only. 

Based on Meirovitch [13] and in accordance with Burton et al. [14], the blade is described as a 
geometrically linear Euler-Bernoulli beam. The initially uncoupled equations of motion for 
deformation in x and y direction – combined in the vector u – read: 
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m c EI T u F . (1) 

 
Both the displacement vector u and the force vector F comprise an x and a y component. The 

coefficient matrices are all diagonal; m describes the distributed mass, cs represents the structural 
damping, which is assumed to be proportional to mass and stiffness, EI consists of the bending 
stiffness components with respect to the principal axes, and T describes the tension, resulting from 
rotation of the blade. All matrices are r dependent. 

2.2.  Force definition: drag and lift 

The blade cross-section is subjected to an air flow field W (see figure 2). The local width of the 
aerofoil is given by c, and α represents the angle between the flow vector and the local x axis, the so-
called angle of attack. The exposure of the aerofoil to the air flow results in a drag force D and a lift 
force L, see figure 3. The Morison equation is adopted to express the relation between the air flow and 
the drag force, which in this case is restricted to viscous drag only. 
 

 
1

2 dcCρ=D W W , (2) 

 
where ρ the air density and Cd is the Reynolds-number-dependent drag coefficient, accounting for the 
frictional stresses that can develop as a result of the air flow. 

The lift force for attached flow can be determined from the Kutta-Joukowski theorem, which defines 
the force as a function of the air circulation strength Γ and the ambient air flow velocity: 

 
 ( )ρ= ×L Γ W . (3) 

 
The air circulation strength can be defined as: 
 

 
1

2 l rC c=Γ W e , (4) 

 
where er is the unit vector along the local r axis. For relatively small angles α, the lift coefficient Cl 
can be expressed as: 

 
 2 sinlC π α= . (5) 
 

The resulting force vector F is a function of r and time t. The air flow vector W is both r and t 
dependent, as is automatically the angle of attack α. The chord width c varies in space only. The same 
applies for the drag coefficient Cd if its Reynolds number dependency is neglected. 

2.3.  Constituents of the air flow vector 

Both drag and lift are defined as a function of the air flow vector W, which is positioned with an angle 
α to the local x axis of the aerofoil (see figure 3). The air flow can be expressed as a summation of 
vectors: 
  

 
t

∂= + −
∂
u

W W w , 
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where W  represents the mean air flow velocity and w the velocity fluctuations around the mean. The 
time derivative of u represents the structural response velocity, which is responsible for the added 
damping. 

In terms of the global coordinate system, the mean air flow velocity consists of the mean wind 
velocity YW  and the in-plane rotational velocity calculated from the rotational speed of the rotor Ω and 
the r coordinate of the aerofoil cross section under consideration. The velocity fluctuation vector 
defines the turbulence field in both X and Y direction. Moreover, for rotating turbines, the blade 
experiences the mean in-plane wind velocity as harmonically varying. The variation of YW  along the 
rotor azimuth is thought to be expressed in wY. 

In order to incorporate these vectors in the equations of motion, equation (1), the vector 
components need to be transformed to the local reference system by rotation over the angle β. After 
transformation to the local reference system, the vector components are referred to as Wx and Wy, and 
follow from: 

 

cos sin

cos sin
x Y

y Y

W r W

W W r

Ω β β
β Ω β
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w . 

 

2.4.  Modal decomposition 

The motion of the turbine blade is described by a system of coupled nonlinear partial differential 
equations, allowing for motions in both x and y direction, see equation (1). Coupling takes place via 
the forcing term, due to the structural response velocity. Likewise, the nonlinearity is pronounced in 
the forcing term, since eventually in both drag and lift forcing terms the multiplication W|W| appears. 

Due to the presence of the damping and the centrifugal stiffening term, the system of differential 
equations contains operators that are not self-adjoint, implying that no classical, i.e., real, dynamic 
modes with fixed nodes exist. In order to identify structural modes of vibration, a phase shift within 
each mode should be accounted for. Nevertheless, the system of partial differential equations is 
reduced to a system of ordinary differential equations by means of modal decomposition. Both ux and 
uy are expressed as an infinite series of generalized coordinates q and shape functions ψ, 

( ) ( )

1

n n
x x x

n

u q ψ
∞

=

=∑  and ( ) ( )

1

n n
y y y

n

u q ψ
∞

=

=∑ . 

The adopted shapes functions, or modes, correspond to those of an undamped and untensioned 
blade. Since these modes do not fulfil the orthogonality conditions with respect to all differential 
operators, the initial partial differential equations cannot be decomposed into a system of uncoupled 
ordinary differential equations. By restricting the decomposition to the first modes for both x and y 
directions, a system of two ordinary differential equations can be obtained, only coupled via the 
structural response velocity. After multiplication of both differential equations by (1)

xψ  and (1)
yψ , 

respectively, and integration over r, the following ordinary differential equations remain: 
 

2 (1) (1)
(1) (1) (1)

2
0

d d
d

d d

R
x x

x x x x x x

q q
M C K q F r

t t
ψ+ + = ∫ , and 

2 (1) (1)
(1) (1) (1)

2
0

d d
d

d d

R
y y

y y y y y y

q q
M C K q F r

t t
ψ+ + = ∫  (6) 

. 

2.5.  Force decomposition 

In order to take a closer look at the right hand sides of the sets of differential equations, first the scalar 
equations of the forcing vector F are presented, using equation (2), (3) and (4): 
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2 2x x d x l yxF D L cC W cC Wρ ρ= + = −W W  (7) 

 
1 1

2 2y y y d y l xF D L cC W cC Wρ ρ= + = +W W  (8) 

 
It can immediately be recognized that the decomposition concerns the multiplications xWW  and 

yWW . Furthermore, the aeroelastic coefficients Cd and Cl are α dependent. Equation (5) introduced a 

simple relation between Cl and α, which is valid for attached flows. With reference to figure 2, the 
angle of attack can be expressed as sin yWα = W . This expression reveals the time dependency of 

the angle of attack and introduces an additional coupling between the motions in x and y direction. It 
should be noted that blade torsion, mainly resulting from the twisted shape of the blade, may bring an 
important contribution to the time variation of the angle of attack α. Since the twist angle is neglected 
in the current analysis, no α variation due to torsion takes place. The drag coefficient Cd is assumed to 
be α independent. This assumption is valid for relatively small values of α, a condition that was 
already adopted for the lift coefficient Cl.  

In accordance with equation (6), the force expressions (7) and (8) need to be multiplied with 1
xψ  and 

1
yψ , respectively, and integrated with respect to r over the interval 0 ≤ r ≤ R. It should be noted that in 

general the chord width c and the drag coefficient Cd are r dependent. The same applies for the 
tangential velocity of the aerofoil XW , which is calculated from the rotational speed of the rotor Ω and 
r. 

Both Fx and Fy depend on the wind fluctuations in x and y direction. Moreover, both expressions 
contain structural response terms related to motion in both directions. A closer inspection of these 
equations can be facilitated by the application of Taylor series expansion. If only the linear terms are 
considered, and both the drag coefficient and the in-plane wind velocity are set to zero, the following 
expressions remain: 

 

 ( )
(1)

(1) (1)d
2 cos sin

d
y

Yx X Y y

q
F c W r w w

t
πρ β Ω β ψ

 
= − − +  
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 (9) 
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(1)(1)
(1) (1)

cos2 sin 2 cos2 sin 2

dd
                    cos sin cos sin

d d

Y Yy X Y

yx
Y Yx y

F c W r w c r W w

qq
c W r c r W

t t

πρ β Ω β πρ Ω β β

πρ β Ω β ψ πρ Ω β β ψ

= − + −

− − − +
 (10) 

 
Here, the drag coefficient has been set to zero, because in the linear regime its value is small compared 
to the lift contribution. By setting the in-plane wind velocity to zero, the rotor is assumed to be 
perfectly yawed towards the direction of the mean wind velocity. For convenience the wind velocity 
terms are expressed in terms of the global reference system. 

The linear forcing terms provide some valuable insight in the coupling of the lateral blade motions. 
First of all, the forcing in x direction is amplified by the dynamic response in y direction. For a rotating 
rotor, when the pitch angle is small, this negative added damping term is proportional to the mean 
wind velocity. Besides, out of plane wind velocity fluctuations generate a force which is directed 
oppositely to in plane wind velocity fluctuations. Equation (9) also shows that for a non-operating 
rotor, with blades feathered into the direction of the mean wind velocity, the linear lift force in x 
direction is zero.  

The linear y forcing expression (10) consists of two fluctuation terms and two structural response 
terms. For a rotating blade with small pitch angle, the force due to in-plane fluctuations depends 
linearly on the mean wind velocity. The force resulting from out-of-plane fluctuations is proportional 
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to the rotational velocity of the blade. For small pitch angles, the structural response terms generally 
represent positive added damping terms. The aerodynamic damping of a rotating blade, as presented in 
[15], can be recognized in the fourth forcing term, relating the structural response in y direction to the 
force in y direction.  

3.  Volterra series expansion 
Systems containing nonlinearities of the polynomial type can be analyzed in the frequency domain 
with the application of the Volterra series expansion [15]. By means of Volterra frequency response 
functions, input-output relations per polynomial order can be established. The technique is based on 
the expansion of the nonlinear operators into a series of homogeneous operators, consisting of multiple 
convolutions [16]. Considering the k-th generalized coordinate, the frequency response can be thought 
of as an infinite series, representing the first and all higher-order contributions: 

( ) ( ; )

1

k i k
j j

i

q q
∞

=

=∑ɶɶ , for j = x, y. 

 
Since this study only considers the primary modes, the superscript k is omitted from here on. The i-th-
order contribution is defined by the corresponding Volterra kernels ( )i

jH . For instance, for the system 

under consideration with two degrees of freedom, the first-order of the Volterra series yields: 
 
    

( ) ( ) ( ) ( ) ( ) ( ) ( )(1) (1) (1) (1) (1)
; ; ; ;j j X j Y j X X j Y Yq q q H w H wω ω ω ω ω ω ω= + = +ɶ ɶ ɶ ɶ ɶ . 

 
The explicit reference to the frequency dependency is adopted for convenience sake. For the second-
order term it follows: 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

(2) (2) (2) (2) (2)
; ; ; ; 1 1 1 1 1

(2) (2)
; 1 1 1 1 1 ; 1 1 1 1 1

,

           ,

1
d

2

1 1
d d
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, ,

2

j j XX j XY j YY j XX X X

j XY X Y j YY Y Y

q q q q H w w

H w w H w w

ω ω ω ω ω ω ω ω ω ω ω
π

ω ω ω ω ω ω ω ω ω ω ω ω ω ω
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∞

−∞
∞ ∞

−∞ −∞
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+

−

+
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∫

∫ ∫

ɶ ɶ ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ

 
where both the Volterra kernels and the input signals are a function of ω and ω1. The frequency ω1 
represents an auxiliary integration variable. 

An elegant method to derive the Volterra kernels is the harmonic probing technique, which is based 
on the idea that a harmonic input results in a harmonic output [17]. For linear systems, this approach is 
very common. The identification of higher-order kernels require the balance of multiple harmonic 
input signals with the system output. Worden et al. [18] described this kernel-identification technique 
for multi-input multi-output systems. The main limitation with respect to the application of this 
method is the complexity of the nonlinear system. If the system contains nonlinearities of the 
polynomial type, the kernels can in general be identified. 

The response to finite-order polynomials can be determined exactly with the application of the 
Volterra series expansion in combination with the harmonic probing technique. Polynomials of 
infinite-order, however, require truncation in order to suit Volterra analysis. The same applies for 
finite-order polynomials that consist of too many terms, since for higher-order kernels the method 
becomes computationally expensive. 

The nonlinearities of the system under consideration are not of the polynomial type. To facilitate the 
Volterra expansion and the harmonic balancing, a Taylor series expansion is applied to the right hand 
sides of the equations of motion, equation (7) and (8). The input and output variables wx, wy, qx and qy 
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are taken as expansion variables. Expansion is carried out about the zero means and to the third-order, 
implying that linear and quadratic components are accounted for. 

4.  Case study 

4.1.  NREL5 turbine 
To analyze the structural response of a wind turbine blade, the blade characteristics of the academic 
NREL5 turbine are adopted [12]. A typical aspect of these blades is the relatively high Lock number, 
which expresses the aerodynamic lift capability of a blade in comparison to its weight. As a result of 
this, other researchers – among which Bir and Jonkman  [11] – have found high aerodynamic damping 
values, which may be not in the same range as for other turbine types. The first flap wise natural 
frequency, for bending around the local x axis, is approximately 4.21 rad/s, whereas the first edge wise 
natural frequency is approximately 6.79 rad/s.  

4.2.  Excitation 
In reality, the unsteady wind field as experienced by a rotating turbine blade, consists of the ambient 
turbulence, wake turbulence and gust slicing effects. The definition of representative frequency input 
signals is a scientific field on its own. Nevertheless, to illustrate the frequency response to wind 
fluctuations, a free-field Kaimal spectral density function is adopted to describe the turbulence field: 
 

5 3

1 1

2
4 1 6

2

ω ω ω
σ π

−
 

= + 
 

Y Y Y Y

Y

w w w w

w Y Y

S L L

W W
 

 

Y Yw wS is the autospectral density function for the wind fluctuation wY. YW is the corresponding mean 

wind velocity, 1 YwL  the turbulence length scale and σ
Yw the standard deviation of the wind 

fluctuations. The wind fluctuation in X direction, which is either lateral or vertical, has been defined 
for a turbulence intensity of 0.8=

X Yw wI I and a turbulence length scale of 1 10.3=
Y Xw wL L [14]. 

For the numerical analyses, a mean wind velocity of 11.4 m/s, a longitudinal turbulence intensity of 
10% and a longitudinal turbulence length scale of 150 m are adopted. The amplitude signal is defined 
with frequency steps of 0.02 rad/s, within the frequency band from –10.0 rad/s to 10.0 rad/s. The phase 
spectra are randomly generated for phase angles from –π to π, implying that the complex frequency 
signal represents the Fourier transform of a random time signal.  

4.3.  Non-operating turbine 
First, the response of a standstill blade is analyzed. The blade is assumed to be pointing upwards and 
feathered into the direction of the mean wind velocity, implying a pitch angle of ½π. The aeroelastic 
drag coefficient is set at 0.1, irrespective of the angle of attack. The lift coefficient follows from 
equation (5). 

Figure 4 presents the linear frequency-domain responses. Due to the chosen pitch angle, the local x 
axis coincides with the global Y axis; the local y axis is directed oppositely with respect to the global X 
axis. This implies that the blade motions purely result from the wind fluctuations in the same direction.  
Close inspection of equation (9) and (10) reveals that the x component of the linear lift force for this 
scenario equals zero; the linear (1)

;x Yqɶ  completely results from drag. Equation (10) indicates that in-

plane wind fluctuations generates y motion due to the varying lift force. The dynamic amplification, 
however, is highly damped by the structural response. No linear coupling between the motions is 
identified. 

The second-order responses, presented by figure 5 and figure 6, clearly reveal some motion coupling 
for the non-rotating blade. The x response results from auto-excitation in both X and Y direction, where 
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the coupled (2)
;ɶx XXq response is of the same order of magnitude as the linear response. The responses 

show clear peaks at the frequency corresponding to the natural frequency of the considered motion. 
Whether these responses are lift of drag dominated requires a more detailed analysis. Contrarily to the 
linear response, the second order response in y direction also result from the combined excitations. 
The response amplitude, however, is an order of magnitude smaller than the linear response amplitude. 
To what extent the structural response damps the dynamic amplification cannot be derived instantly 
from these figures. The shape of the peaks, however, indicates a high amount of effective damping.  

  
Figure 4. First-order response (non-operating 

turbine). 
Figure 5. Second-order x response (non-operating 

turbine). 

  
Figure 6. Second-order y response (non-operating 

turbine). 
Figure 7. First-order response (operating 

turbine). 

4.4.  Operating turbine 
In contrast to the non-operating turbine, the blade is now given a rotational speed of 12.1 rpm. This 
coincides with the rated rotor speed of the adopted turbine. Blade pitch is set at 0.1. All other 
parameters are the same as in the previous non-operating case. 

The linear responses are illustrated by figure 7, which shows the combined flap and edge wise 
response amplitudes, responses in local y and x direction respectively, to both in-plane (X) and out-of-
plane (Y) excitations. The main, however, highly damped motion is observed in flap wise direction, 
resulting from wind fluctuations in the global Y direction. From this motion, commonly, the fore-aft 
aerodynamic damping of wind turbines is derived. Besides, the excitation in global Y direction induces 
edge wise motion, with a peak at the corresponding natural frequency. The large (1)

;y Yqɶ  response, 

compared to the (1)
;y Xqɶ  response, results from the relatively high rotational velocity of the blade with 

respect to the mean wind velocity (see equation (10)). According to equation (9), the edge wise forcing 
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is affected by the flap wise response. Due to the absence of a pronounced peak in the flap wise 
response, this interaction cannot be deduced from figure 7. 

  
Figure 8. Second-order x response (operating 

turbine). 
Figure 9. Second-order y response (operating 

turbine). 
The second-order responses, depicted in figure 8 and figure 9, show most contribution in edge wise x 

direction, resulting from global out-of-plane excitation. This motion contributes considerably to the 
peak that was already observed for the linear response, see figure 7. All other response contributions 
are at least one order of magnitude smaller than the linear responses. For the specific case under 
consideration it seems reasonable to neglect these second-order effects. Noteworthy, however, is the 
clear peak in the (2)

;ɶy YYq response, which is observed at the natural frequency of the edge wise motion. 

5.  Conclusions 
This paper describes the derivation of a reduced model of an isolated wind turbine blade. The coupled 
nonlinear wind excitation, including structural motion was elaborated and the structural response was 
analyzed in the frequency domain. To this end, use was made of a Volterra series expansion and the 
harmonic probing technique. The estimation of the flap and edge wise response due to combined 
nonlinear wind excitation was the main purpose of this work.  

Dynamic responses were determined for both a non-operating and an operating blade. Use was made 
of the blade characteristics of the NREL5 turbine. The nonlinear force formulations were expanded 
into a Taylor series and truncated after the quadratic terms. The linear responses clearly visualized the 
combined flap and edge wise motion of the blade. Second-order responses were proven to be present 
and in some cases shown to be of the same order of magnitude as the linear responses.  

Some additional remarks with respect to the estimation of second-order effects need to be made. 
First of all, no linear relation between the input and output amplitudes exists and second, the response 
frequencies cannot one-to-one be related to the frequency content of the excitation. This implies that a 
turbine blade may be excited at a natural frequency, while the excitation does not contain much energy 
at this specific frequency. From this it follows that conclusions with respect to second-order 
contributions cannot be generalized on the basis of a single analysis. In this specific case, the high 
aerodynamic damping of the NREL5 blade may have concealed second-order effects that can be of 
concern for other blade types.  

Unavoidably, the presented approach carries some limitations. First, the geometrically linear blade 
formulation does not allow for blade twist along the longitudinal axis. Its validity for larger 
deformations is limited too. Second, the modal reduction is restricted to the first modes only. Since the 
adopted modes are not adjusted for secondary effects as centrifugal stiffening and added damping, 
their validity may be poor. Especially for the highly damped NREL5 blade the extent to which the 
assumed modes are uncoupled should be doubted. Next, torsional motion is not incorporated in the 
analysis, implying that variations in angle of attack are not fully accounted for. Furthermore, the 
aeroelastic relations, which are functions of this angle of attack are assumed to be linear, or almost 
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linear. These relations are only valid for attached flows, implying that the angle of attack should be 
relatively small. With respect to the aerodynamics, the adopted wind turbulence field cannot be 
assumed to be representative for a rotating rotor, since rotational effects and wake effects are not 
incorporated. Last of all, due to the coupled flap and edge wise excitation, also cubic and even higher 
nonlinearities appear in the forcing formulation. These terms have been neglected. 
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