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Abstract. The effect of selecting the twist angle and chord length distributions on the wind 
turbine blade design was investigated by performing aerodynamic optimization of a two-bladed 
stall regulated horizontal axis wind turbine. Twist angle and chord length distributions were 
defined using Bezier curve using 3, 5, 7 and 9 control points uniformly distributed along the 
span. Optimizations performed using a micro-genetic algorithm with populations composed of 
5, 10, 15, 20 individuals showed that, the number of control points clearly affected the outcome 
of the process; however the effects were different for different population sizes. The results 
also showed the superiority of micro-genetic algorithm over a standard genetic algorithm, for 
the selected population sizes. Optimizations were also performed using a macroevolutionary 
algorithm and the resulting best blade design was compared with that yielded by micro-genetic 
algorithm.  

1.  Introduction 
Wind power is generated by the aerodynamic forces developing on the blades of wind turbines. 
Therefore, aerodynamic design of the blades is very important to maximize the energy capture [1]. In 
[2], [3] wind turbine design was performed using gradient based search algorithms. These algorithms 
however, are successful for smooth search spaces containing a single extreme [4]. Gradient-free 
metaheuristic optimization methods [5], on the other hand are very suitable for multi-parameter 
optimization problems like wind turbine blade design. Being gradient-free they are very insensitive to 
the presence of local extremes in the search space [4]. Genetic algorithms is one of these methods [4], 
[6] where, a group of turbines called a population is generated and each member of the population is 
ranked according to its fitness function which may the power output of the turbine. Examples of wind 
turbine design using genetic algorithms can be found in [7] - [13].  Power output at a given wind speed 
strongly depends on the blade parameters like chord length and twist angle distributions along the 
blade span [1]. The way these distributions are defined may affect the output of the optimization. In 
[7][8]and[13] chord and twist distributions along the span were defined using second order 
polynomials with three uniformly distributed stations, while they were defined using fourth order 
polynomials with five evenly distributed points in [11]. Reference [9] used linear chord and nonlinear 
twist distributions which were obtained using inverse design software PROPID [14] and a genetic 
algorithm software PROPGA [15] while a third order polynomial for chord distribution and a spline 
function for the twist distribution were used in [10]. An alternative way was presented in [12] where 
these distributions were specified by keeping the chord length and twist angle values at a given station 
randomly between the predefined minimum and maximum values for that station. It is clear that many 
different ways had been employed in the literature to describe the chord and twist distributions along 
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the blade. In order to see the effect of using different ways to specify these distributions on the 
optimization results, studies were performed by using different number of control points on the blade 
span and different interpolation techniques to define the chord and twist angle distributions. Here, 
optimizations were performed for a two-bladed, stall regulated turbine with a diameter of 10.6m. 
These characteristics are same with those of NREL Phase VI experimental wind turbine [9]. A genetic 
algorithm code was used for the computations which maximized the annual energy production (AEP) 
of the turbine. Here AEP was calculated using blade element momentum theory (BEMT) which can 
yield quick aerodynamic load predictions [1], [16]. Despite its weaknesses for high wind speeds, 
unsteady conditions and yaw error, BEMT can yield good predictions for steady wind conditions [16]. 
This makes it a very suitable tool for preliminary calculations performed to rank the individuals in the 
population [11]. Wind characteristics of a wind turbine site are also very crucial for the AEP of the 
turbines located there. Here, aerodynamic optimization of a 10.6 m diameter horizontal axis wind 
turbine was performed for Gökçeada location in Turkey for which the wind speed characteristics were 
obtained by using the Weibull distribution [1].  

Optimizations were performed using genetic algorithm with and without the micro approach [17] 
and using different population sizes. During the computations same random number seeds were used 
so that the changes were purely due to chord length and twist angle distributions. In order to compare 
the capabilities of the employed genetic algorithm with a different metaheuristic optimization 
approach, resulting optimizations were also compared to those obtained using a macroevolutionary 
algorithm [18].  

2.  Methodology 
Aerodynamic optimization of a 10.6m diameter, stall regulated and constant speed wind turbine was 
performed for Gökçeada, Turkey using a micro-genetic algorithm. For this purpose, the free version of 
the genetic algorithm code written by David L. Carroll was used [19]. Here the code was modified so 
that it used annual energy production (AEP) as the fitness function. Computations were performed for 
population sizes of 5, 10, 15 and 20, and the maximum number of generations was taken to be 5000.  

In order to calculate AEP, the variation of power generated with wind speed and the wind 
characteristics of the turbine site were needed. The latter was obtained using Weibull distribution of 
wind [1] for Gökçeada location [13]. For the calculation of the power output at different wind speeds, 
the BEMT solver WT_Perf [20] was used. This solver was developed by National Renewable Energy 
Laboratory (NREL), operated by the Alliance for Sustainable Energy, LLC for the U.S. Department of 
Energy. During the computations, drag force was included in the axial and tangential induction factor 
calculations. Prandtl hub and tip loss corrections [1] were included along with swirl effects. The rotor 
was assumed to have no precone angle, shaft tilt or yaw error.  

BEMT requires the aerodynamic data of the airfoil used at a segment on the blade at different 
Reynolds numbers [1]. The airfoil database which was created in [7] was also used in this study. The 
airfoils in the database can be seen in Table 1. The root section extended up to 0.4R, the primary 
portion covered the region between 0.4R and 0.9R, and the tip region constituted the rest of the blade. 
Here R was measured from the rotation axis. The aerodynamic data of the airfoils were extrapolated to 
-180 ° to 180° angle of attack range using preprocessor program AirfoilPrep [21], which was 
developed at NREL. BEMT predictions were obtained using 64 spanwise segments on each blade. 
This number was obtained from a segment independence study performed in [7]. 

 
Table 1. Airfoil Database 
Portion Airfoils 
Root FFA-W3-241, FFA-W3-301, NACA 63-430, S814, S823 
Primary FFA-W3-211, FFA-W3-241, FX-66-S196, NACA 63-218, NACA 63-221, NACA 

64-421, NACA 65-421, S809, S822, S834 
Tip Airfoils for primary portion + SD2030, NACA 63-215, NACA 64-415,  NACA 65-

415, FX-63-137, E387. 

The Science of Making Torque from Wind 2014 (TORQUE 2014) IOP Publishing
Journal of Physics: Conference Series 524 (2014) 012044 doi:10.1088/1742-6596/524/1/012044

2



 
 
 
 
 
 

The AEP for a turbine was calculated using equation (1) [22]: 
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Where P(Vi) is the power generated by the turbine at a wind speed of Vi, and c and k are the 

Weibull parameters. During the calculations the cut-in and cut-off speeds were taken to be 4 m/s and 
25 m/s, respectively. The velocity increment was taken to be 1 m/s so that the value of N in equation 
(1) was 22. For the AEP calculations, all individuals were operated at their optimal tip speed rations 
[7].  

The optimization parameters for blade design were selected as chord length and twist angle 
distributions along the blade span, the pitch angle of the blades and airfoil profiles for the root, 
primary and tip portions of the blades. Preliminary optimizations were performed using five different 
ways to define twist angle and chord length distributions. The first three cases used three equally 
spaced stations on the blade and employed a 2nd order interpolating polynomial, cubic spline 
interpolation and a Bezier curve, respectively. The remaining two cases used seven equally spaced 
stations and employed cubic spline interpolation and a Bezier curve, respectively. Preliminary analysis 
showed that different approaches used for defining the distributions considerably affected the 
optimization results.  

2.1.  Genetic Algorithm 
In the genetic algorithm code [19] the values of the design parameters in their specified range are 
defined using a prescribed number of binary digits (bits). These bits, also called alleles [6], are 
initialized randomly for each individual in the population. After this the fitness function for each 
individual was calculated using equation (1). The optimization process was performed for turbines 
with rated power of 20 kW. Therefore, if the power output of a turbine exceeds 10% of this rated 
power its fitness was set to zero. The parents that would be used to generate the next generation were 
selected using tournament selection [6] with a tournament size of 2. The off-springs were obtained 
using uniform cross-over [6] with a probability of 0.5 [23]. The best individual was carried on to the 
next generation using elitist strategy, while the other individuals were replaced by the off-springs.  

Majority of the optimizations were performed using the micro-genetic algorithm technique [17] 
which allows small population sizes. In this technique mutation was not applied; instead the 
convergence of the population was checked. This was done by counting the number of alleles different 
from the alleles of the best individual, and if this number was less than 5% of the total number of the 
bits then population was assumed to converge. When this happened, all the individuals except the best 
one were regenerated randomly [17]. Optimization performed using this strategy, however, was shown 
to lead to the premature convergence of the best individual [7]. Therefore, the regeneration process 
was performed every ten generations regardless of the convergence, as it was done in [7]. 

Computations were also performed without using this micro approach. Here, regeneration process 
was replaced with mutation [6]. In this study jump mutation was applied with a probability of 0.1.    

2.2.  Macroevolutionary Algorithm 
Optimizations using macroevolutionary algorithm was performed by following the procedure 
described in [18]. Unlike a genetic algorithm where new individuals (off-spring) are created by 
combinations of old individuals (parents); in macroevolutionary algorithm a species (which may be an 
individual) is eliminated (becomes extinct) or carried on to the next generation (stays alive) through 
some inter-species relationships. These relationships are defined using a so called connectivity matrix 
[18] and if a species becomes extinct, it is replaced by a new species, which is created either randomly 
or by attracting the extinct species towards one of the surviving species [18]. Experiments performed 
in this study showed that, best results were obtained if the best individual was selected as the one 
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towards which an extinct species was attracted. Also, in order to avoid premature convergence, the 
regeneration process described in the previous section was performed every ten generations. 

An in-house computer code was developed for the computations and was coupled with the 
WT_Perf software in order to maximize AEP.  

3.  Results and Discussion 
In this section, optimization results obtained by using different techniques to describe chord 
length and twist angle distributions of the blades of a two-bladed, stall regulated horizontal axis 
wind turbine with a rotor diameter of 10.6m were presented. Once a number of control points are 
selected on the span of a blade, different techniques can be used to define a distribution of a quantity 
along the span using its values specified on these control points. Three of these techniques are 
polynomial interpolation [24], spline interpolation [24] and a Bezier curve [25]. In order to see the 
effect of using these different techniques, initial optimizations were performed using five different 
ways to define twist angle and chord length distributions. The first three cases used three equally 
spaced stations on the blade and they employed a 2nd order interpolating polynomial, cubic spline 
interpolation and a cubic parametric Bezier curve, respectively. The remaining two cases used seven 
equally spaced stations and employed cubic spline interpolation and a Bezier curve, respectively. The 
optimizations were performed using micro-genetic algorithm approach with 5 individuals. Same 
random number seeds were used during the optimizations so that the changes were purely due to chord 
length and twist angle distributions. This preliminary analysis showed that using different approaches 
for defining the distributions considerably affected the optimization results and using seven stations 
(cases 4 and 5) yielded higher AEP values. 

When the resulting chord and twist distributions of cases 4 and 5 are examined from Figure 1, it 
was observed that cubic spline interpolation used in case 4 led to highly wavy distributions for both 
parameters. Although the resulting design led to high AEP value, the blades may be difficult to 
manufacture. In this study, the maximum and minimum values for twist angle and chord length at the 
control points were decreased along the spanwise direction. However, the ranges were allowed to 
overlap. Figure 1 clearly showed that, unless a monotonic distribution constraint is enforced, 
polynomial and spline interpolation methods might yield oscillatory distributions with sharp changes 
as the number of control points increased. Therefore, Bezier curve was used for the rest of the study. 
Although this approach cannot be considered as the ultimate solution to this problem, it was preferred 
because it yielded smooth chord length and twist angle variations ever with high number of control 
points.   
 

 
(a) 

 
(b) 

Figure 1 Chord length (a) and twist angle (b) distributions yielded by cases 4 and 5 
 

Figure 2 displays the evolution of AEP obtained using 3, 5, 7 and 9 control points along the span of 
the blade using populations composed of 5, 10, 15 and 20 individuals. It is clear from this figure that 
changing the number contol points affected the optimization results considerably. For 3 and 5 points, 
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highest AEP values were achieved for a population with 10 individuals. However, this size was 15 and 
5 for 7 and 9 points, respectively. Unfortunately, the results were not very conclusive about the 
optimum number of control points and population size for the optimizations.  Nevertheless the overall 
best performance was achieved by using 3 points on the surface for a population size of 10. The best 
AEP values obtained for each case was given in Table 2.  

Chord and twist angle distributions of the best blade designs obtained using different number of 
control points were displayed in Figure 3. Distributions were found to be in agreement with highest 
discrepancies observed in the vicinity of the root and tip regions. Here, the design, which employes 9 
points yielded wavy distirbutions while the best profile obtained using 3 points yielded a blade whose 
twist angle is almost contant toward the tip and relatively thicker at the inboard stations. 

 
Table 2. Best AEP values 
Number of Control Points AEP (kWh) 

3 93444 
5 93256 
7 92879 
9 93270 
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Figure 2 Evolution of AEP for different number control points on the blades using different population 

sizes. 
 

In order to compare the performance of micro-genetic algorithm approach with that of a standard 
genetic algorithm, optimizations were repeated with a standard genetic algorithm using 3 control 
points and different population sizes. Evolution of AEP for populations composed of 5, 10, 15, 20 
individuals were displayed and compared with micro-genetic algorithm predictions in Figure 4. 
Analysis of this figure revealed that the micro genetic algorithm outperformed the latter for all 
population sizes, and performance differences were considerable for population sizes of 10 and 15. 
Although a standard genetic algorithm requires much larger population size than 20 for optimum 
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performance, population size had to be kept low due to high computational cost of fitness function 
evaluation.   
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Figure 3 Twist angle (top) and chord length (bottom) distributions of best blade designs for different 
number of control points.  

 
Optimizations performed using macroevolutionary algorithm were displayed in Figure 5. Here the 

computations were done using two population sizes, 5 and 20. For 3 and 5 control points, smaller 
population yielded slightly better results, while for 7 and 9 control points, using larger population was 
clearly more beneficial.  

Chord and twist angle distributions of the best blade designs obtained using different number of 
control points were displayed in Figure 6. Here, using seven points also led to wavy chorld length and 
twist angle distributions. The best blade again had a convex twist angle and concave cord length 
distributions similar to the micro-genetic algorithm output.  

The highest AEP value, 92972 kWh, obtained with 5 points and 5 individuals, was slightly lower 
than 93444 kWh, which was obtained by micro-genetic algorithm. In order to compare the blade 
designs yielded by these two algorithms, twist angle and chord length distributions of the best blades 
found by micro-genetic algorithm and macroevolutionary algorithm were displayed in Figure 7. Both 
designs had a nearly constant twist angle distribution towards the tip region while macroevolutionary 
algorithm design was more twisted with a non-monotonic distribution. Compared to micro-genetic 
algorithm design, macroevolutionary algorithm design was thicker at the outboard and thinner at the 
inboard spanwise stations.  

Power coefficient versus tip speed ratio (TSR) plots of both designs were shown in Figure 8. The 
curves were almost identical with micro-genetic algorithm design produced slightly higher power 
between TSRs of 5 and 6. The optimum TSR was found to be 6 for designs.  
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Figure 4 Evolution of AEP for genetic algorithm with and without micro approach using different 
population sizes. 
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Figure 5 Evolution of AEP obtained using macroevolutioary algorithm with different population sizes.  
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Figure 6 Twist angle (top) and chord length (bottom) distributions of best blade designs for different 
number of control points. 
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Figure 7 Twist angle (top) and chord length (bottom) distributions of best blade designs obtained using 
micro-genetic algorithm and macroevolutionary algorithm.  
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Figure 8 Power coefficient vs. tip speed ratio of the turbines optimized using micro-genetic algorithm 

and macroevolutionary algorithm. 

4.  Conclusions 
Aerodynamic optimization of the blades of a two-bladed, stall regulated, horizontal axis wind turbine 
was performed using micro-genetic algorithm and macroevolutionary algorithm. Optimizations were 
performed by maximizing the annual energy production, which was calculated using blade-element 
momentum theory. Chord length and twist angle distributions along the blade span, the pitch angle of 
the blades and airfoil profiles for the root, primary and tip portions of the blades were selected as 
design parameters. Throughout the study twist angle and chord length distributions were defined using 
Bezier curve and different number control points uniformly distributed along the span. Here, Bezier 
curve selected over polynomial and spline interpolation techniques in order to avoid oscillatory 
distributions that might be obtained for large number of control points. Computation performed for 
different population size showed that the number of control points affected the evolution of annual 
energy production. Using different number of control points led to different outcome for different 
population sizes, hence the results were not conclusive, however, highest annual energy production 
values was obtained using 3 control points with micro-genetic algorithm and 5 control points with  
macroevolutionary algorithm. Hence, one might not need too many control points to define an 
optimum distribution for twist angle and chord length.  

When the micro-genetic algorithm was compared with a standard genetic algorithm, the former 
outperformed the latter for all the population sizes considered. The highest annual energy production 
value yielded by macroevolutionary algorithm was also slightly lower than that yielded by micro-
genetic algorithm. When the best blade designs obtained by these two algorithms were compared, 
macroevolutionary algorithm yielded a non-monotonic twist distribution with the outboard parts of the 
blade twisted towards feather.  

In this study, a pseudo random number generator with same seed was used for all the cases studied 
so that the changes would be purely due to the design parameters and the optimization algorithm. 
When the optimizations were repeated with a different seed, similar outcomes were observed however, 
with slightly different AEPs and final optimization parameters. Therefore, optimizations should be 
repeated with more random number seeds. All the optimization methods studied yielded a different 
design (albeit slightly) when the random number seed was changed. This indicated that the 
exploitation/exploration balance [26] of the algorithms may be poor. All of the optimization 
algorithms employed in this study had constant parameters. Adaptation of these parameters [26] might 
be necessary to provide a better exploitation/exploration balance.    
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