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Abstract. This paper deals with the passive vibration control of edgewise vibrations by means 
of roller dampers and tuned liquid column dampers (TLCDs). For a rotating blade, the large 
centrifugal acceleration makes it possible to use roller dampers or TLCDs with rather small 
masses for effectively suppressing edgewise vibrations. The roller dampers are more 
volumetrically efficient due to the higher mass density of the steel comparing with the liquid. 
On the other hand, TLCDs have their advantage that it is easier to specify the optimum 
damping of the damper by changing the opening ratio of the orifice. In this paper, 2-DOF 
nonlinear models are suggested for tuning a roller damper or a TLCD attached to a rotating 
wind turbine blade, ignoring the coupling between the blade and the tower. The decoupled 
optimization is verified by incorporating the optimized damper into a more sophisticated 13-
DOF wind turbine model with due consideration of the coupled blade-tower-drivetrain 
vibrations, quasi-static aeroelasticity as well as a collective pitch controller. Performances of 
the dampers are compared in terms of the control efficiency and the practical applications. The 
results indicate that roller dampers and TLCDs at optimal tuning can effectively suppress the 
dynamic response of wind turbine blades. 

List of some important symbols 
ω0 1st edgewise eigenfrequency of the blade  ωd natural frequency of the damper 
m mass of the damper (roller or liquid column)  m0 1st modal mass of the blade 
Ω rotational speed of the rotor  x0 mounting position of the damper 
χ frequency ratio ωd/ ω0  μ mass ratio m/m0 
μf coefficient of rolling friction between surfaces  η reduction ratio of the edgewise vibration 
α cross-section ratio of the vertical column versus 

horizontal column 
 γ ratio of the horizontal  length to total 

length of the liquid column 
ξ head loss coefficient due to the orifice    

1.  Introduction 
Traditionally, the modes of vibration in wind turbine blades are classified as flap-wise and edgewise 
modes. Flap-wise vibrations are blade motions out of the plane of rotating rotor, whereas edgewise 
vibrations take place in the rotor plane. Modal damping in the flap-wise direction is relatively high due 
to the strong aerodynamic damping when the turbulence flow is attached to the blade [1]. In contrast, 
edgewise vibrations are associated with insignificant aerodynamic damping [1], which gives rise to the 
increased dynamic responses and fatigue damage. Moreover, the edgewise vibrations will increase the 
fluctuations of the generator torque and hence influence the quality of the generated power.  

The Science of Making Torque from Wind 2014 (TORQUE 2014) IOP Publishing
Journal of Physics: Conference Series 524 (2014) 012037 doi:10.1088/1742-6596/524/1/012037

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



 
 
 
 
 
 

Structural control technologies, which have achieved significant success in mitigating vibrations in 
civil engineering structures, are being increasingly investigated for application in wind turbines in 
recent years. Most of these studies focus on the vibration control of wind turbine towers using external 
dampers [2-4]. Limited studies have been carried out regarding the structural control of blade 
vibrations. Active TMDs have been studied for mitigating edgewise vibrations in wind turbine blades, 
and the results show that the active TMDs achieve greater response reductions than the passive 
counterpart [5]. An active strut installed near the root of the blade was proposed in [6] for the control 
of blade vibrations, the concept of which is based on resonant interaction between the rotor and the 
controller. The use of active tendons mounted inside each blade is described in [7] for the active 
control of edgewise vibrations. The controller allows a variable control force to be applied in the 
edgewise direction according to a prescribed control law. However, all the above-mentioned active 
control solutions need relatively complicated controller configurations and some amount of power 
input. This indicates the importance and necessity of developing simple and robust dampers for wind 
turbine blades. 

In the present paper, roller dampers and tuned liquid column dampers (TLCD) are proposed for 
passive control of edgewise vibrations in wind turbine blades. In the case of building or tower 
vibrations, the oscillations of the roller or the liquid column, and hence the control effect of the roller 
damper or the TLCD are governed by the gravitational acceleration g. For the rotating blade the 
corresponding control effect is governed by the centrifugal acceleration, which can reach to a 
magnitude of 7-8 g for the outboard of a 65 m-long blade. This makes it possible to use roller dampers 
or TLCDs with rather small masses for effectively suppressing edgewise vibrations. Reduced 2-DOF 
nonlinear models are established for a rotating blade mounted with a roller damper or a TLCD. The 
turning and parametric studies of the dampers are carried out based on the decoupled 2-DOF models, 
with the modal loads obtained from a more sophisticated 13-DOF aeroelastic wind turbine model [8] 
subjected to a 3-dimensinal turbulence field. The performances of the optimized dampers are analyzed 
and compared. 

2.  Equations of motion of the blade-damper system 
Since the focus is on studying the interaction between the damper and the blade and the control effect 
of the damper on edgewise vibrations, the coupling between the blade with the tower and the 
drivetrain are ignored in the following formulation. Hence, only edgewise blade vibrations are 
considered, and the design of the damper is totally based on the local dynamics of the rotating blade. 

 
Figure 1: Definition of coordinate system, geometry and degrees of freedom 

 
Figure 1 shows the schematic representation of a rotating blade equipped with a roller damper or a 

TLCD. The edgewise vibration of the blade is described in the moving local (x2, x3)- coordinate 
system, while the motion of the damper inside the deformed blade is described in another local 
coordinate system (y2, y3) fixed to the damper. The mass per unit length and the bending stiffness in 
the edgewise direction of each blade are denoted 3( )x and 3( )EI x , respectively. The damper is merely 
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devised to control the fundamental edgewise mode described by the degree of freedom q(t). Then, the 
local edgewise displacement u2(x3, t) of the rotating blade in the x2- direction can be described as 
u2(x3,t) = -Φ(x3)q(t), where Φ(x3) indicated the fundamental eigenmode of the edgewise vibration. This 
is normalized to 1 at the tip, i.e. Φ(Lb)=1, where Lb denotes the blade length. The rotation of the blade 
is assumed to take place with a constant rotational speed Ω. 

It is assumed that the damper is placed at the coordinate x3=x0 inside the blade. Hence the local 
displacement and rotation of the blade at this position with the sign definitions in Figure 1 are given 
as:  

2, ( ) ( ), ( ) ( )du t aq t t bq t                                           (1) 

where the auxiliary parameters are introduced: 
3 00 3

3

( ), ( ) |x x

d
a x b x

dx     . 

The velocity components of the blade in the moving (x2, x3)- coordinate system can be written as: 

2, 3 3 3

3, 3 3

( , ) ( ) ( )

( , ) ( ) ( )
b

b

v x t x x q t

v x t x q t

   
  


                                                                (2) 

Hence, the kinetic and potential energy of the blade without damper becomes: 
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the elastic stiffness of the blade without geometric contributions. The term 2
1k  indicates the 

geometrical stiffening due to the centrifugal acceleration, and the term 2 cos( )k g t indicates the 
geometrical softening cause by the variation of the axial force during rotating due to the weight of the 

blade, where  
3
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  .  

The fundamental edgewise angular eigenfrequency of the blade when it is in stand still position can 
be obtained as:  

0 0/ek m                                                                  (4) 

2.1.  Roller damper 

  
Figure 2: Geometry of the dampers. (a) roller damper, (b) TLCD 
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As shown in Figure 2 (a), the roller damper consists of a ball with a mass of m rolling back and forth 
inside a circular tube. By tuning the natural frequency of the roller to the 1st edgewise eigenfrequency 
of the blade, the damper could effectively absorb energy from the 1st edgewise mode and thus add 
damping to the system. The radius of the roller and the outer radius of the tube are denoted r and R, 
respectively. Depending on the available space inside the hollow blade, the tube may be devised in the 
form of a complete circle or an arc. The position of the roller inside the tube is defined by the 
clockwise rotation θ(t) from y3-axis. Hence, q(t) and θ(t) make up the degrees of freedom of the blade-
damper system. The potential and kinetic energy of the roller can be written as: 

0 cos sin cos( )( )d eU mg x aq R bq                                              (5) 

2 2 2 2 2
0 0

1
( ) ( ) 2 ( ) ( )cos( ) sin( )

2
( )[ ]d e e eT m x aq a q R bq R bq x aq bq aq bq                       

(6) 
 

where (7 / 5)em m , eR R r   are the equivalent mass and equivalent length, respectively [8].  

As the damper mass rolls along the tube, a friction force ( )f t takes place due to the rolling friction 
between the contacting surfaces, the magnitude of which is proportional to the normal force acting on 
the roller through the tube. In a rotating blade, this normal force is governed by the centrifugal force 
since it is much larger than the gravity force. The friction force can be given by: 

2 2
0( ) [ cos( )]sign( )f ef t mR mx bq                                              (7) 

where f is the coefficient of rolling friction between the surfaces. Then, the two generalized loads for 

the degrees of freedom ( )q t and ( )t are given by:        
2 2

0 0 0( ) ( , ) , ( ) ( ) [ cos( )]sign( )q e f e eF t f q t c q F t R f t R mR mx bq                        (8) 

where 0c  is the modal damping coefficient of the primary structure, 0 ( , )f q t  denotes the turbulence 
induced modal load on the blade considering aerodynamic damping. Using the equations (3), (5), (6) 
and (8), the equations of motion of the blade-roller system can be obtained from the stationary 
conditions of the Euler-Lagrange equations: 

2 2 2 2 2 2 2
0 0 0 0

2
0 0

( ) ( ) (2 )cos( )

( ) 2 ( ) sin( ) sin( ) sin( ) ( , )

( ) ( )
( ) ( )

e e e e e e e

e e e

m m a R b q m R b c q k m m a q m R abq a ab bq

m R a bx a a bq bq mg a t bR t bq f q t

  

   

           

              

    
  

  (9) 
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  

    

           

  

 
    (10) 

Assuming small values of q(t) and θ(t) and ignoring the influence of gravity, the angular natural 
frequency of the roller can be calculated from Equation (10) as: 

2 2
0 0

2
e e

d
ee e

m R x x

Rm R


 
                                                       (11) 

Defining 0/d    as the frequency ratio between the damper and the structure, 0/m m  as the 
mass ratio between the damper and the 1st modal mass of the blade, the parameters of the roller 
damper to be optimized are  and f if 0x , and  are fixed.  

2.2.  TLCD 
TLCD is a special type of the tuned liquid damper that relies on the motion of the liquid column in a 
U-shaped tube to counteract the action of external forces acting on the primary structure. Similar with 
the roller damper, by tuning the natural frequency of the liquid column to that of the 1st edgewise 
mode, the TLCD could effectively add damping into the system. As shown in Figure 2 (b), since the 
U-shaped tube is mounted inside a rotating blade with changing azimuthal angle, it should be 
manufactured in a closed form to prevent the liquid from leaking out of the tube. In this case, an extra 
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slim tube connecting two vertical tubes is fixed in order to balance the pressure above the liquid 
column during oscillation. L, B and H denote the overall length, the horizontal length and the vertical 
length of the liquid column, where L=B+2H, and A and A0 denote the horizontal and vertical cross-
sectional areas of the liquid column, respectively. The displacements of the liquid in the vertical 
column and the horizontal column are denoted v(t) and v0(t), respectively. The continuity of liquid 
motion indicates that the liquid velocity in the vertical column and horizontal column has the 
relationship of 0v v  , where 0/A A  is the area ratio. The liquid mass is given as 0(2 )m HA BA  , 

where  is the mass density of the liquid.  
For ease of derivation, the following auxiliary parameters are introduced (see Figure 2 (b)): 

2 0 3 0( ) ( )cos( ), ( ) ( )sin( ), ( )v t x aq bq v t x aq bq t t bq                              (12) 

where 2 ( )v t and 3 ( )v t denote the velocities of the center point O of the horizontal tube in y2- and y3-

direction, respectively. ( )t is the rotational angle between the global X3- and the local y3- axis. Then, 
the potential and kinetic energy of the liquid column inside the tube can be given as: 

      0

0

1 1 1 1
( cos sin ) (2 )cos sin (2 )cos sin
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     
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  (14) 

where g denotes the acceleration of gravity.  
The inherent damping of the TLCD is introduced in the oscillating liquid column through an orifice, 

which is placed at the center of the horizontal tube (point O). The damping force of the liquid motion 
can be expressed as: 

2
0 0 0 0

1 1
( )

2 2df t A v v A v v                                                        (15) 

where ξ is the head loss coefficient, a parameter controlled by the opening ratio of the orifice. Then, 
the two generalized loads for the degrees of freedom ( )q t and ( )v t are given by:        

2
0 0 0

1
( ) ( , ) , ( ) ( )

2q v dF t f q t c q F t f t A v v                                    (16) 

    Using the equations (3), (13), (14) and (16), the equation of motion of the blade-TLCD system can 
be obtained from the stationary conditions of the Euler-Lagrange equations: 

2 2 2
4 5 0 6 7 0 0 3 4

2 2 2
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15 12
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(17) 
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           (18) 

where the parameters m4-m32 and k3-k6 are provided in Appendix A.  
Assuming small values of q(t) and v(t) and ignoring the influence of gravity, the angular natural 

frequency of the liquid can be calculated from Equation (18) as: 
2

30 31 0 0

16

2( ) 2 (1 )

2 ( 1)d

m m x H x L

m H B L L




  
     

   
  

                                     (19) 

where /B L  is the ratio of the horizontal length to overall length of the liquid column.  Given 0x , , 
 ,  and  , the parameter of the TLCD to be optimized are  and  . Then, L can be determined 
from equation (19), which in turn determines the value of B and H. 

3.  Numerical simulations 
The NREL 5 MW baseline wind turbine [9] is utilized to calibrate the 2-DOF models. Each blade has 
a length of 63m and an overall mass of 17740 kg. The related data of the modal shape, the bending 
stiffness and mass per unit length of the blade can also be found in [9].  

A 3-dimensional rotational sampled turbulence has been generated with given mean wind speed 
and turbulence intensity [8]. By applying this turbulence field to the rotor of the 13-DOF wind turbine 
model, we can obtain edgewise modal loads for each blade, based on which the optimization and 
parametric studies of the dampers are to be carried out. In the simulation, the fourth-order Runge-
Kutta method was applied to solve the nonlinear ordinary differential equations of the 2-DOF models.  

The reduction ratio η is defined as: 

,0

,0

q q

q

 





                                                                    (20) 

where ,0q and q are the standard deviations of the edgewise tip displacements of the blade without and 

with control, determined as
1

2 2

0

1
( )( )( )T

q qq t dt
T

   , where
0

1
( )

T

q q t dt
T

   and T is the total sampling 

time. The optimal damper parameters can be found by maximizing the value of η. 

3.1.  Optimization and parametric study of the roller damper 
The modal load is calculated from a turbulence field with a mean wind speed of 15 m/s and a 
turbulence intensity of 0.1. Since the control effect of the damper is dominated by the centrifugal 
acceleration 2

0x  , it is expected that we can obtain better control effect by mounting the damper closer 
to the blade tip. On the other hand, the available space inside the blade is decreasing towards tip, 
which makes the determination of x0 a practical tradeoff problem. In the following optimization 
procedure x0 is set to be 45 m, 50 m and 55 m respectively. Moreover, it is well known that the larger 
mass ratio μ would give a better control performance for a passive damper. However, the damper mass 
should be limited according to the construction and maintenance considerations. Thus two sets of mass 
rations are considered, i.e. μ=3%, μ=4%. For each combination of the assigned value of x0 and μ, we 
search for the optimal values of the tuning ratio χ and the friction coefficient μf by maximizing η, as 
shown in Table 1. Moreover, with the optimized damper parameters, the resulting maximum rotational 
angle of the roller θm, and the equivalent radius Re are also calculated and presented in Table 1. Due to 
the restriction of space, we suggest to devise the tube in the form of an arc, of which the chord length 
C can be calculated as C =2Resin(θm). The value of C can be regarded as the horizontal size of the 
roller damper. 

From Table 1, there are four observations to be made: (i) the control effect increases as the mass 
ratio increases; (ii) a damper mounted closer to the tip can reduce the edgewise vibration more 
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efficiently; (iii) the optimal value of χ decreases as x0 and μ increases, while the optimal value of μf 
does not change much when x0 and μ changes; (iv) the maximum rotational angle of the roller reduces 
as x0 and μ increases. However, the resulting chord length C is almost unchanged as long as μ is 
unchanged.  

Table 1: Optimal parameters of the roller damper 
μ=3% (m=42.36 kg) μ=4% (m=56.48 kg) 

x0 (m) χopt ,f opt  η (%) θm (rad) Re (m) C (m) x0 (m) χopt ,f opt η (%) θm (rad) Re (m) C (m) 

45 
50 
55 

0.982 0.034 36.70 0.772 1.595 2.226 45 
50 

   55 

0.960 0.031 38.72 0.675 1.671 2.089 

0.945 0.032 39.61 0.676 1.916 2.396 0.923 0.025 42.52 0.538 2.011 2.061 

0.923 0.027 43.24 0.552 2.212 2.319 0.915 0.025 46.05 0.475 2.248 2.058 

If the roller parameters shift away from their respective optimal values, the control effect is 
expected to degrade. It is observed that the detuning effect of χ is more pronounced when it shifts from 
the optimal value towards larger values and the damper is more robust in the frequency range of 0.9< χ 
<1 [8]. On the other hand, the reduction ratio is not so sensitive to the detuning of μf when μf is set to 
be larger than 0.02 [8]. 

3.2.  Optimization and parametric study of the TLCD 
More variables enter into the equations of motion of the blade-TLCD system than that of the blade-
roller system. Hence we fix x0=55 m in order to evaluate the influence of other parameters on the 
control effect. By assigning different values of μ, α and γ, the optimal frequency ratio, the optimal 
head loss coefficient can be determined, as shown in Table 2. It should be noted that the optimization 
has been carried out with the constraint that the maximum liquid response vm should not exceed the 
vertical length of the liquid column H (vm/H≤1). This constraint is used so that the liquid of the TLCD 
remains in the vertical column all the time and the equations of motion of the blade-TLCD system are 
valid. With the optimal value of χ and ξ, the resulting values of the reduction ratio η, the ratio vm/H and 
the horizontal length B are calculated and presented in Table 2. In all cases, the value of vm/H is below 
1, which ensures the validity of the equations of motion as well as the optimized parameters. 

Table 2: Optimal parameters of the TLCD with constraint vm/H≤1 (x0=55 m) 
μ=3% (m=42.36 kg) μ=4% (m=56.48 kg) 

α γ χopt ξopt η (%) vm/H B (m) α γ χopt ξopt η (%) vm/H B (m) 

1 

0.5 0.997 2 30.03% 0.969 1.860 

1 

0.5 0.99 2.4 32.07% 0.839 1.888 

0.6 0.99 3.5 32.41% 0.999 2.273 0.6 0.982 3 35.03% 0.965 2.307 

0.7 0.99 9.5 31.14% 0.994 2.661 0.7 0.975 7.5 35.80% 0.992 2.743 

1.5 

0.5 0.997 2 29.27% 0.903 1.493 

1.5 

0.5 0.99 1.9 31.63% 0.860 1.515 

0.6 0.99 3.5 31.39% 0.952 1.754 0.6 0.982 2.5 34.60% 0.986 1.781 

0.7 0.99 8.5 30.59% 0.996 1.977 0.7 0.975 7 35.08% 0.993 2.373 

2 

0.5 0.997 1.5 28.74% 0.983 1.247 

2 

0.5 0.99 1.6 30.91% 0.895 1.247 

0.6 0.99 3 30.70% 0.988 1.428 0.6 0.982 2.5 33.81% 0.981 1.450 

0.7 0.99 8.5 29.30% 0.983 1.572 0.7 0.975 7 33.86% 0.982 1.620 

 
From Table 2, there are six observations to be made: (i) as μ increases, the control effect increases 

and the value of vm/H reduces; (ii) the optimal value of χ decreases as μ and γ increases, but the 
variation of α has no effect on χopt; (iii) the optimal value of ξ increases as γ increases in order to limit 
the value of vm/H. The variations of α and μ have no clear effect on ξopt; (iv) for μ=4%, the increase of 
γ increase the control effect of the TLCD since the mass of the horizontal part of TLCD is the only 
effective mass acting on the structure; (v) as the mass ratio reduces to 3%, η does not increase 
monotonously with γ due to the constraint of vm/H≤1. For example, in the cases of γ=0.7, the values of 
ξopt are larger than their counterparts when μ=4%, so that the constraint of vm/H≤1 is fulfilled, resulting 
in the fact that η is even smaller comparing with the reduction of γ=0.6; (vi) the increase of α reduces 
the total length L of the liquid column as well as the horizontal length B, but reduces the control effect 
of the TLCD slightly.  
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3.3.  Comparison between the roller damper and the TLCD 
Based on the results in Table 1 and 2, comparisons on the control efficiency of the roller damper and 
the TLCD can be carried out in the case of x0=55 m. For a given mass ratio, the control performance of 
the roller damper is always better than that of the TLCD. For μ=3%, the maximum reduction 
coefficient η is increased from 32.41% (for TLCD) to 43.24% (for roller damper), while for μ=4%, the 
maximum reduction coefficient is increased from 35.80% (for TLCD) to 46.05% (for roller damper). 
The reason is that the effective mass of the roller damper is (7 / 5)em m m  [8], while the effective 

mass of the TLCD is ( / )em B L m m  .  
Figure 3 presents the comparison of the edgewise vibration without control, with a TLCD and with 

a roller damper, where the optimized damper parameters are used. Same time series of the modal load 
has been used in the three cases in order to make a meaningful comparison. It is observed from the 
time histories in Figure 3 (a) that both the TLCD and the roller damper significantly suppress the 
edgewise vibrations, and that the roller damper obtains somewhat better control performance than the 
TLCD. The Fourier amplitude spectrum of q(t) as illustrated in Figure 3 (b) shows that both dampers 
effectively suppress the peak around 6.85 rad/s corresponding to the eigenvibration of the blade in 
edgewise direction, and this peak is slightly lower when the roller damper is utilized. This means a 
properly tuned roller damper or TLCD could almost totally absorb energy from the eigenvibration of 
the blade. Further, it is noted that all frequencies below 6.85 rad/s are hardly affected by the dampers, 
including a low peak around 1.267 rad/s. This peak is associated with the rotational speed of the blade, 
and both the dampers are not functioning at this frequency. It should be noted that much more energy 
is concentrated around the frequency of 6.85 rad/s for the uncontrolled response since aerodynamic 
damping is low in the edgewise direction. As a result, although not functioning around the frequency 
of Ω, a well-tuned TLCD or roller damper still exhibit promising performance in suppressing 
edgewise vibrations. 

 
Figure 3: Blade edgewise vibrations without damper, with TLCD and with roller damper, V0=15 m/s, I=0.1, 

μ=3%, x0=55 m. (a) Time series, (b) Fourier amplitude. 
 

Although the control performance of the roller damper is always better than the TLCD, there may 
well be other practical situations when the latter type is still preferred. In the case of x0=55 m, the 
horizontal length (C) of the roller damper is 2.319 m for μ=3% and 2.058 m for μ=3%, which may 
make it impossible to install the damper inside that part of the blade. Since the size of the roller 
damper cannot be further reduced as long as χ is fixed, the only solution is to mount the damper 
further away from tip, where more space is available. On the other hand, the size of the TLCD can be 
adjusted easily by changing the value of α and γ. For example, the maximum reduction coefficient of 
the TLCD (32.41%) is obtained when α=1 and γ=0.6, which result in an unacceptable horizontal 
length B=2.273 m. However, by increasing α to 1.5 and keeping γ unchanged, the value of B is 
reduced to 1.754 m while the control effect is very slightly affected. Moreover, the damping effect of 
TLCDs is easier to quantify by changing the opening ratio of the orifice, while it is difficult to 
accurately quantize the friction coefficient between the roller and the tube. This means the 
performance prediction of TLCDs could be more accurate than that of the roller damper, when 
applying the dampers into practical project.  
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3.4.  Evaluation by the 13-DOF aeroelastic wind turbine model 
To verify the applicability of the decoupled optimization and the control effect of the dampers in 
highly coupled wind turbine systems, the optimized dampers are incorporated into a 13-DOF 
aeroelastic model, as illustrated in Figure 4. The details of the 13-DOF model are described in [8], and 
it takes several important characteristics of a wind turbine into account, including time dependent 
system matrices, coupling of the tower-blades-drivetrain vibrations as well as nonlinear aeroelasticiy. 
For each blade a roller damper or a TLCD is mountd at the position of x0=55 m. Therefore, a 16-DOF 
system is obtained for the wind turbine with a roller damper or a TLCD mounted in each blade.  

         
Figure 4: 13-DOF aeroelastic model of three bladed wind turbine. Definition of fixed and moving frames of 

reference and the degrees of freedom. 
 

Figure 5 shows the edgewise vibration in blade 1, with the same damper parameters and the same 
turbulence field as used for Figure 3. It is shown from Figure 5 (a) that both the optimized roller 
damper and TLCD effectively mitigate edgewise vibrations. The standard deviation is reduced by 
25.63% (the TLCD) and 36.57% (the roller damper), respectively. Similar with the results in Figure 3, 
the roller damper is more effective than the TLCD. Figure 5 (b) shows that the frequency component 
corresponding to eigenvibration of the blade is significantly reduced by the roller damper and the 
TLCD, and this peak is lower when the roller damper is utilized. Comparing with the results obtained 
from the 2-DOF models, the control effects of both dampers are slightly reduced when incorporated 
into the highly coupled 13-DOF model. This is because the couplings of the blade edgewise vibration 
to other degrees of freedom cause a transfer of mechanical energy from the edgewise vibration to other 
vibrational modes, resulting in a reduced mitigation efficiency of the dampers. Nevertheless, the roller 
damper and the TLCD with parameters optimized from the reduced 2-DOF models still achieve 
promising performance on the highly coupled 13-DOF model. 

 
Figure 5: Blade edgewise vibrations without damper, with TLCD and with roller damper, obtained from the 

16-DOF system. V0=15 m/s, I=0.1, μ=3%, x0=55 m. (a) Time series, (b) Fourier amplitude. 

4.  Conclusions 
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The present paper investigates the effectiveness of roller dampers and TLCDs in mitigating edgewise 
vibrations in wind turbine blades. Parametric optimizations of the dampers have been carried out using 
the decoupled 2-DOF nonlinear models developed for a rotating blade equipped with a roller damper 
or a TLCD. More variables need to be considered in the optimization procedure of TLCDs, making the 
design of TLCDs more flexible in different application problems. The simulation results show that 
roller dampers are more effective in suppressing edgewise vibrations than TLCDs for a given mass 
ratio, because the roller damper has a larger effective mass than that of the TLCD. On the other hand, 
TLCDs offer some unique practical advantages, such as accurate quantification of damping property, 
flexible installation, easy adjustment and almost maintenance free. Both roller dampers and TLCDs 
are promising to be utilized in wind turbine blades for edgewise vibration control.  

The problems to be further studied include (1) the detuning effect on the control performance when 
the TLCD parameters shift away from the optimal values; (2) experimental validation of the 
performance of both the roller damper and the TLCD. 
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