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Abstract. The aim of the current work is to analyze possible advantages of mounting Vortex 
Generators (VG’s) on a wind turbine blade. Specifically, the project aims at investigating at 
which radial sections of the DTU 10 MW Reference Wind Turbine blade it is most 
beneficial to mount the VG’s in order to increase the Annual Energy Production (AEP) 
under realistic conditions. The present analysis was carried out in several steps: (1) The 
clean two dimensional airfoil characteristics were first modified to emulate the effect of 
all possible combinations of VG’s (1% high at suction side x/c=0.2-0.25) and two Leading 
Edge Roughness (LER) values along the whole blade span. (2) The combinations from Step 
1, including the clean case were subsequently modified to take into account three dimensional 
effects. (3) BEM computations were carried out to determine the aerodynamic rotor 
performance using each of the datasets from Step 2 along the whole blade span for all wind 
speeds in the turbine control scheme. (4) Employing the assumption of radial independence 
between sections of the blades, and using the results of the BEM computations described in 
Step 3, it is possible to determine for each radial position independently whether it is 
beneficial to install VG’s in the smooth and LER cases, respectively. The results 
indicated that surface roughness that corresponds to degradation of the power curve may to 
some extent be mitigated by installation of VG’s. The present results also indicated that the 
optimal VG configuration in terms of maximizing AEP depends on the degree of severity 
of the LER. This is because, depending on the condition of blade surface, installation of 
VG’s on an incorrect blade span or installation of VG’s too far out on the blade may cause 
loss in AEP. The results also indicated that the worse condition of the blade surface, the more 
gain may be obtained from the installation of VG’s. 

1. Introduction
A Vortex Generator (VG) is an aerodynamic device, consisting of a small vane that creates a vortex. 
This vortex, in turn, making its way down the suction side of an airfoil, pumps the higher-velocity air 
from the upper segment of the boundary layer to the lower segment characterized by lower-velocity 
flow, thereby energizing it. If the VG’s are arranged in a suitable configuration in the right position 
along the suction side of an airfoil, VG’s can delay flow separation and aerodynamic stalling, thereby 
improving the lifting capacity of that airfoil. By improving aerodynamic characteristics of airfoils and 
wind turbine blades, VG’s may increase the power output and Annual Energy Production (AEP) of 
wind turbines. However, even though several investigations have been carried out, e.g. [1,2,3,4,5,6], 
further analysis is required in order to investigate whether VG’s are beneficial on a specific turbine, 
and if they are, on which radial stations of the blade they should be mounted on. That, in turn may 
depend of whether the blade surface is completely smooth or there is some sort of roughness on it. The 
surface of every blade deteriorates in time. The rate and type of deterioration depends on the 
conditions in which the blades operate. A surface of a blade operating on a desert may eat away the gel 
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coat relatively fast due to the contact with sand, but even the impact with raindrops cause wear of the 
surface over time. 
The condition of blade’s surface has significant impact on the aerodynamic performance as blades 
with rough surface enter stall faster due to the effect which roughness has on the boundary layer. In 
very short, one may say that the roughness disturbs the flow very close to the surface, eventually 
creating stall. In very short, one may also say that VG’s and roughness have opposite effect on the lift 
curve where VG’s extend the linear region and roughness shortens it. Therefore, in a case with a 
relatively rough surface, it may be beneficial to install VG’s on the whole blade span in order to delay 
the angle of attack for which separation starts and thereby regain a part of the energy production ‘lost’ 
to surface roughness. The estimated loss in AEP due to roughness can be quite high. Therefore, the 
obtainable gain from installation of VG’s in these cases can be quite significant. 
The situation is often quite different in case of (new) blades with smooth surfaces. If the blade is well 
designed, the whole outer part of the blade, which account for the vast majority of the power 
production, is not entering stall. Adding VG’s to that part of the blade will in this case only decrease 
the power production due to the extra added drag due to the VG’s themselves. However, the root 
sections of wind turbine blades are relatively thick in order to transmit the very large bending 
moments generated at the outer parts of the blade. This is aerodynamically unfavorable because these 
thick airfoils stall much earlier than their thinner counterparts. This may be at least partly addressed by 
mounting VG’s at the inner part (approx. out to 30%) of the blade span in order to reattach the 
boundary layer and increase the energy production stemming from the inner blade sections. Different 
sources report different gains in AEP where the upper limit appears to be around 2%. 
The aim of the current work is to analyze possible advantages of mounting VG’s on the DTU 10 MW 
Reference Wind Turbine [7]. The project aims at investigating at which radial sections of the blade it 
is most beneficial to mount VG’s in order to increase The AEP for blades with two different levels of 
surface roughness as well as for the smooth surface case. 

2. Methods

2.1.  Analysis procedure 
The aim of the current work is to analyze possible advantages of mounting VG’s on the DTU 10 MW 
Reference Wind Turbine. The primary tools used in the project are engineering models for the effect 
of the VG’s and surface roughness developed in the present work by Gaunaa and described herewith, 
three-dimensional effects by Bak et al. [8], and the Blade Element Momentum based analysis and 
optimization code HAWTOPT by Fuglsang [9]. 
The present analysis was carried out in several steps, listed below:  
1. The clean two dimensional airfoil characteristics were first modified to emulate the effect of all

possible combinations of surface roughness and VG’s (1% high at suction side x/c=0.2-0.25)
along the whole blade span.

2. The resulting polars, including also the clean case, were modified to account for three dimensional
effects.

3. BEM computations were carried out to determine the aerodynamic rotor performance using each
of the datasets from Step 2 along the whole blade span for all wind speeds in the turbine control
scheme. The turbine blades were not pitched to reduce the angle of attack until the rated power of
10 MW was reached when increasing the wind speed.

4. Employing the assumption of radial independence between sections of the blades, and using the
results of the BEM computations described in Step 3, it is possible to determine for each radial
position independently whether it is beneficial to install VG’s in the clean and Leading-Edge-
Roughness (LER) cases, respectively. Note that the aerodynamics of a blade section is not entirely
radially independent from other sections whereas such assumption is always present in BEM.
Further, airfoil characteristics are typically obtained in a wind tunnel or by computations,
independent of other airfoils. The present analysis, based on the assumption of radial
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independence, seems to be an optimal compromise between computational efficiency and 
reliability of the results. Alternatively, a classic optimization problem could be set up on the 
expense of the problem’s complexity and computational efficiency. In such, and optimization 
algorithm would determine the position of VG’s on the blade and use the BEM code to obtain the 
corresponding aerodynamic response. Then, the effects of blade deflection could be included.  

2.2.  Description of the method to modify aerodynamic data to emulate the effect of Vortex Generators 
Analysis of measurements of various airfoils with and without VG’s in the VELUX open-jet wind 
tunnel at Re=1.6x106 [10, 11, 12] and in the Stuttgart Wind Tunnel at Re=3.0x106 [13] have shown 
that the main effects of VG’s on the lift coefficients on 2D airfoils can be modeled in a simple way 
using the lift decomposition used in several dynamic stall models. In this decomposition, the actual lift 
coefficient is a weighted sum of a fully attached lift coefficient and a fully stalled lift coefficient. The 
weight factor is the separation function, which is 1 for attached flow and 0 for fully stalled flow. The 
lift is therefore written as: 

𝐶𝑙(𝛼) = 𝐶𝑙,𝑎𝑡𝑡(𝛼) 𝑓(𝛼) + 𝐶𝑙,𝑓𝑠(𝛼) (1 − 𝑓(𝛼)) (1) 

where α is the angle of attack, Cl(α) is the resulting lift coefficient, Cl,att(α) is the fully attached lift 
coefficient, Cl,fs(α) is the fully separated lift coefficient, and f(α) is the separation function. Hansen 
et.al [14] explains in detail how the decomposition is performed in the Risø BL Dynamic stall model.  
In the dynamic stall models, the key effect in dynamic behavior of the lift in stall is essentially 
modeled by lagging the separation function in time using for instance filters in time. In the present 
case we are not concerned with the temporal behavior of the coefficients, but instead how adding 
VG’s to an airfoil, and thereby modifying the boundary layer to delay stall, can be modeled. From 
analysis of the measured airfoil data it was observed that the fully attached lift coefficients in the 
decomposition were scarcely affected by the addition of the VG’s to the airfoil. Also the fully 
separated lift coefficient remained relatively unchanged by the addition of the VG’s, so essentially 
only the separation function was altered by the addition. This finding therefore suggests that the effect 
that VG’s have on the lift coefficient could be modeled by decomposing the lift in the two separate lift 
coefficients (attached and fully stalled parts) and the separation function, and then changing the 
separation function to take into account for the effect of the VG’s on the resulting lift. The modelled 
lift coefficient curve is then obtained from the fully attached and fully stalled curves from the baseline 
non-VG case by use of the modified separation function. 
The lift part of the VG model only uses a single parameter – the angle offset that the separation 
function is to be shifted with between f=0.7 and f=0.3. The angle of attack where the lift starts 
deviating from the fully attached region, f=0.999, stays the same in the VG case, as does the angle of 
attack where the flow is fully separated f=0. The separation function offset angle is most likely a 
function of many parameters: airfoil type, airfoil relative thickness, type/size/position of the VG’s, 
Reynolds number, turbulence intensity in the oncoming flow, and possibly other parameters. One way 
of obtaining a plausible value for this angle offset is to investigate airfoils of the same relative 
thickness with measurements with and without VG’s at conditions (Reynolds numbers and turbulence 
intensity) comparable to those at which VG’s should be modeled. In the present work, measurements 
carried out in the VELUX wind tunnel [10, 11, 12]  (Re=1.6 million, 1% turbulence) and in the wind 
tunnel of the University of Stuttgart (Re=3 million, 0.02%-0.05% turbulence) [13] were used to 
determine suitable angle offsets. 
The method of taking into account the VG’s in the drag coefficient response uses the same coefficient 
as the lift. Since the addition of the VG’s introduces additional drag on the VG’s themselves, and 
additional drag due to energizing the boundary layer, there is a drag penalty added in the linear region 
∆Cd(α)=f(α)∆Cd,VG where ∆Cd is the resulting drag coefficient increase, 𝑓 is the separation function, 
and ∆Cd,VG is the drag offset level. Apart from this, the drag model “stretches” the original drag 
contribution according to the separation function such that the drag in the VG case at some angle of 
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attack is equal to the drag that the original airfoil has at the angle where the separation function has the 
same value. This is done because the majority of the drag value in stall and partly stalled conditions is 
associated with separation, so when the VG’s delay separation, then also the drastic increase of drag 
associated with this is delayed. In addition to the part of the drag corresponding to the pressure field of 
the reference “clean” case, the VG equipped case has higher lift coefficients (and thereby generally 
lower pressures on the suction side) than that of the baseline case for the same value of the separation 
function. Therefore, an additional drag term is added in the VG simulation which depends on the 
difference between the VG lift and the baseline lift, as well as the separation function. Figure 1 shows 
a typical input and output obtained using the VG model, i.e. showing that the model predicts the 
performance as expected. The addition of the VG’s resulted in an increase of maximum lift and an 
increase of drag in the linear region. The result is also supported by the behavior observed in the 
analyzed measurements, i.e. drag of the case with VG’s is lower than the reference case in the angle of 
attack regions where the reference case stalls more than the case with VG’s. Note that in those angle 
of attack regions it is most beneficial to use VG’s on wind turbine blades.  
The present engineering model used in the present work does not affect the aerodynamic moment 
coefficients. However, the moment coefficients are not used in the BEM computations used in the 
present work. 
The relative chordwise positions, x/c, of the modeled VG’s with h/c=1%, where h is the height of the 
VG, was at the position at which the aforementioned wind tunnel tests show good performance of 
VG’s, i.e. x/c=0.3 for t/c<30%, x/c=0.25 for t/c>36%, and linearly interpolated for other airfoil 
thicknesses. The analysis is essentially based on the VG configuration described by Fuglsang et al [10, 
11, 12]. General information regarding relative dimensions and layout of VG’s was given by Hoerner 
[18]. 

2.3.  Emulation of rough airfoil data from clean airfoil data 
The usual way to emulate the effect of airfoil surface roughness in wind tunnel environments are to 
add standardized roughness elements on specified locations of the otherwise clean airfoil surface. One 
widely used method, termed Leading Edge Roughness (LER) in this work, is to add high turbulator 
900 zigzag tape (originally intended for use on glider planes) at 5% of the chordlength from the leading 
edge along the suction side of the airfoil, and 10% of the chordlength from the leading edge along the 
pressure side. The height of the zigzag tape is h = 0.38mm, its opening angle is 60 degrees, and 
the tape extends 11mm in the streamwise direction. This type of roughness has a relatively big 
impact on the performance of the airfoils. Analysis of the measurement data obtained from the 
Stuttgart wind tunnel at Re=3x106 [13] where the chordlength of the airfoil was 600 mm shows that 
the addition of VG’s to cases with LER results in a much higher increase in lift performance due to the 
VG’s than in the cases with clean blades. Additionally, the added VG-penalty on the drag in the linear 
region may be relatively less prominent than in the corresponding clean case. The experimental results 
also show clearly that the “damage” imparted to the maximum lifting performance by the LER can be 
more than compensated by using VG’s. The payment for this is a relatively small increase in drag in 
the linear region. The last thing observed was that like in the LER-only cases (without VG’s), the 
LER+VG cases showed the angle offset which is therefore assumed to be linked to the LER. Since the 
LER+VG case performance looked more like the clean case than the LER case, a slightly modified 
version of the VG model is used to generate LER+VG data. The additional modification needed is 
only the simple angle offset due to LER.  
The parameters for the airfoils used in the modelling of LER and VG’s are based on trends observed in 
the Velux [10, 11, 12] and Stuttgart [13] measurements. The parameters are presented in Table 1. The 
levels of the surface roughness were named LER1 and LER05 where LER1 corresponds to a 
degradation of the airfoil performance corresponding to the quite severe LER used in the wind tunnel 
applications and LER05 corresponds to less pronounced surface roughness than LER1. 
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Table 1: Parameters used for modelling of Leading Edge Roughness (LER) and Vortex Generators (VG's) 

Thickness 24% 30% 36% 48% 
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Clean+VG 0.0 5.4 0.004 0.0 6.5 0.005 0.0 6.5 0.006 0.0 6.5 0.006 
LER1+VG 1.0 2.9 0.010 1.0 3.5 0.013 1.0 4.5 0.018 1.0 4.5 0.022 
LER05+VG 0.5 4.2 0.007 0.5 5.0 0.009 0.5 5.5 0.012 0.5 5.5 0.015 
LER1 1.0 -4.1 0.006 1.0 -4.5 0.008 1.0 -7.0 0.014 1.0 -7.0 0.014 
LER05 0.5 -2.0 0.003 0.5 -2.3 0.004 0.5 -4.5 0.070 0.5 -4.5 0.070 

Figure 1: Comparison of the present VG modeling method and experimental results [11] for the Risø-B1-24 airfoil at 

Re=1.6*106. The modelled data (dashed) are obtained from the baseline measured data (full) using parameters [AoaOffset=0O 

DeltaAoaSepf=5.5O DeltaCdLin=0.005]. Measured data with VG’s mounted at x/c=0.2 are shown with dotted lines.   

2.4.  Description of the method to 3D correct data 
The airfoil lift coefficients (except for the cylinder part) were 3D corrected according to Bak et al. [8]. 
This method is based on the difference between the 3D pressure distributions as measured on a wind 
turbine in operation and 2D pressure distributions as measured in a wind tunnel. Thus, this method is 
in contrast to all other 3D correction methods known to the authors, which are based directly on the 
lift curves. 

3. Results
In the present study, two levels of surface roughness were used in addition to the aerodynamic 
coefficients of the clean DTU 10 MW Reference Wind Turbine blade [7], which is equipped with a 
family of FFA airfoils [19]. Examples of the lift and drag coefficients of the clean airfoils as well as 
the LER1 and LER05 cases are presented in the figures below together with the corresponding 
coefficients modified to take into account the influence of VG’s. Figure 2 presents the lift (a) and drag 
(b) coefficients, respectively, with and without VG’s, used for the case with the clean, non-
contaminated blade. Note that the baseline aerodynamic coefficients of the 36% and 48% thick airfoils 
used in the present work are equipped with Gurney Flaps.  
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As expected, VG’s modelled on the airfoils delayed stall and therefore lengthened the angle of attack 
region in which the slope of the lift coefficient curve is approximately equal to 2π. Further, the 
addition of the VG’s marginally increased the drag coefficient in the angle of attack region in which 
the flow over the airfoil not equipped with VG’s is attached, and decreased the drag coefficient in the 
angle of attack band above the stall of the airfoil not equipped with VG’s. As in the case of the clean 
airfoils, VG’s modelled on the airfoils with LER1 delayed stall, increased maximum lift and increased 
the drag in the linear region compared to the non VG case. It is seen that installing VG’s on a blade 
with surface roughness may to some extent mitigate the unfavorable consequences of the surface 
roughness.  
Figure 4 presents examples of the lift (a) and drag (b) coefficients, respectively, with and without 
VG’s, used for the LER05 case. 

Figure 2: Examples of the lift (a) and drag (b) coefficients of the FFA [19] airfoils used on the DTU 10MW Reference Wind 

Turbine blade [7], respectively, with and without VG’s, used for the case with the clean, non-contaminated blade 

Figure 3 presents the lift (a) and drag (b) coefficients, respectively, with and without VG’s, used for 
the LER1 case, i.e. the one with more pronounced surface roughness. The main difference between 
Figure 2 and Figure 3 is that surface roughness significantly decreased performance of the airfoils, as 
presented in Figure 3, causing them to stall earlier. 

Figure 3: The lift (a) and drag (b) coefficients of the FFA [19] airfoils used on the DTU 10MW Reference Wind Turbine blade [7], 

respectively, with and without VG’s, used for the LER1 case, i.e. the one with more pronounced surface roughness 
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The influence of VG’s on the aerodynamic coefficients is similar as in the previous two cases, i.e. 
VG’s delayed stall of the modelled airfoils. The level of surface roughness and the aerodynamic 
coefficients presented in Figure 4 may be thought of as being in-between the clean coefficients 
presented in Figure 2 and the LER1 coefficients presented in Figure 3. 

Figure 4: The lift (a) and drag (b) coefficients of the FFA [19] airfoils used on the DTU 10MW Reference Wind Turbine blade [7], 

respectively, with and without VG’s, used for the LER05 case, i.e. the one with less pronounced surface roughness 

All three sets of coefficients together with the operational data of the DTU 10 MW RWT [7] were 
used in a set of BEM computations. The analysis was carried out with wind shear equal to 0.2, and the 
Weibull shape parameter equal to 2. The results from the BEM computations were analyzed and, in 
Figure 5 (a), the relative increase in the Annual Energy Production (AEP) is presented as a function of 
the radial position until which VG’s were modelled. Note that the solid lines  refer to the original 
operational characteristics of the DTU turbine where the maximum tip speed (MTS) of the turbine was 
equal to 90 m/s. The dashed lines refer to edited characteristics where MTS was equal to 70 m/s. This 
means that in the latter, the constant RPM was obtained by the turbine before the rated power. 
Although MTS of 70 m/s is artificially low, it is common for wind turbines to obtain constant RPM 
before obtaining rated power. With this respect, the DTU turbine is different as both are obtained 
simultaneously, and the reason for introducing this gap in the present work was to show how VG’s 
may influence turbines with such gap. According to the presented results, in order to increase AEP for 
the clean blades, VG’s would need to be mounted from 19 m to 24 m of blade span for the case with 
90m/s MTS. However, this would only correspond to a marginal increase in AEP of 0.1%. Remember 
that the curves show the relative AEP benefit of adding VG’s from the root to a certain blade span. 
Mounting VG’s from the root to 19 m blade span would decrease AEP in the clean case. However, 
since in the BEM analysis, and to some extent in real life, the radial sections are independent, only 
mounting VG’s from 19 to 24 m, would increase AEP.  
In the LER05 case, installing VG’s from 14 m to 30 m of blade span would increase AEP by 1.4% in 
the case with 90 m/s MTS. In the case with 70 m/s MTS, installing VG’s from 14 m to 34 m would 
increase AEP by 1.8%. In the LER1 case, installing VG’s from 11 m until the tip would increase AEP 
by 4.8% in the case with 90 m/s MTS, and by 10.1% in the case with 70 m/s MTS. However, 
installing VG’s from 11 m to only 40 m of blade span would already increase AEP by 3.6% in the case 
with 90 m/s MTS, and by 6.4% in the case with 70 m/s MTS. In order to present the problem in a 
broader context, Figure 5 (b) shows the absolute values of AEP as a function of the radial position 
until which VG’s were modelled. 
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Figure 5: (a) An increase in Annual Energy Production (AEP) of the DTU 10 MW RWT [7] plotted as a function of the radial 

position, starting from the root,  until which Vortex Generators (VG's) are modelled, relative to AEP of the blade without VG's (b) 

Annual Energy Production (AEP) of the DTU 10 MW RWT [7] plotted as a function of the radial position, starting from the root,  

until which Vortex Generators (VG's) are modelled 

Figure 5 (b) shows that reducing MTS of the turbine reduces AEP. Further, the worse surface 
condition of the blades, the higher loss in AEP is introduced by the same reduction of MTS. 
Additionally, the further out on the blade VG’s are installed, the smaller the AEP gap between the 
cases with different MTS values is. 
In order to shed more light on the details leading to the aforementioned AEP predictions, Figure 6 
presents the power curves corresponding to the clean blade, the blade with LER05 and LER1, and the 
power curves corresponding to the most beneficial configuration of VG’s according to AEP, for the 
wind speeds up to 14 m/s and 90 m/s MTS. Above 14 m/s wind speed , up to the cut-out wind speed of 
25 m/s, all the power curves are identical, maintaining the rated value of 10 MW. 
The figure indicates that significant surface roughness (LER1) may correspond to a large degradation 
of the power curve which to some extent may be mitigated by installation of VG’s. Note that the curve 
representing the clean blades with VG’s was omitted.  
The present results also indicated that in order to install VG’s so that an increase in AEP is observed, 
modelling of VG’s should be carried out taking into account the actual condition of the blade surface. 
This is because, depending on the condition of blade surface, installation of VG’s too far out on the 
blade may cause loss in AEP caused by the unwanted additional drag of the VG’s in cases where the 
roughness is not severe enough to require “repair” from the VG’s. 
The results also indicated that the worse condition of the blade surface, the more gain may be obtained 
from the installation of VG’s. Analysis of the results presented in Figure 5 led to the conclusion that it 
is possible to install VG’s on clean blades in such a configuration that they would not reduce the 
energy production of the clean blades while they would mitigate some of the negative effects of the 
deterioration of the blade surface in time. In order to do so, the VG’s would need to be installed from 
20 m to 32 m of blade span since in such a configuration they would not reduce AEP of the clean 
blades while they would mitigate some of the negative effects of surface roughness that would occur 
over time. This would correspond to a 4% recovery of the AEP in the LER1 case assuming 70 m/s 
MTS. Note that the DTU 10 MW Reference Wind Turbine, because of its design characteristics, may 
be relatively insensitive to blade surface roughness. Turbines operating closer to the angle of attack 
corresponding to stall would likely be more sensitive to blade surface roughness. Therefore, those 
turbines, with surface roughness, would possibly benefit more from the installations of VG’s. 

0 20 40 60 80 100
-2

0

2

4

6

8

10

Radial Position until which VGs were modelled [m]

In
cr

ea
se

 in
 A

E
P

 [%
]

(a)

 
0 20 40 60 80 100

35

36

37

38

39

40

Radial Position until which VGs were modelled [m]
A

E
P

 [G
W

h]

(b)

Clean TS=90m/s
LER05 TS=90m/s
LER1 TS=90m/s
Clean TS = 70m/s
LER05 TS=70m/s
LER1 TS=70m/s

The Science of Making Torque from Wind 2014 (TORQUE 2014) IOP Publishing
Journal of Physics: Conference Series 524 (2014) 012034 doi:10.1088/1742-6596/524/1/012034

8



Figure 6: Power curves of the DTU 10 MW RWT [7] corresponding to the surface roughness and Vortex Generators (VG's) 

cases modelled in the present work 

4. Conclusions
The aim of the current project was to analyze possible advantages of mounting VG’s on a wind turbine 
blade. Specifically, the project aimed at investigating at which radial sections of the DTU 10 MW 
Reference Wind Turbine blade it is most beneficial to mount VG’s of height in order to increase AEP 
under realistic conditions. The present analysis was carried out in several steps: (1) The clean two 
dimensional airfoil characteristics were first modified to emulate the effect of all possible 
combinations of VG’s (1% high at suction side x/c=0.2-0.25) and two LER values along the whole 
blade span. (2) All possible combinations from Step 1, including also the clean case, were 
subsequently modified to take into account three dimensional effects. (3) BEM computations were 
carried out to determine the aerodynamic rotor performance using each of the datasets from Step 2 
along the whole blade span for all wind speeds in the turbine control scheme. (4) Employing the 
assumption of radial independence between sections of the blades, and using the results of the BEM 
computations described in Step 3, it was determined for each radial position independently whether it 
is beneficial to install VG’s in the clean and LER cases, respectively. 
Two values of MTS of the turbine were investigated, i.e. the original of 90 m/s, and the artificial of 70 
m/s. Additionally, two cases of surface roughness were investigated along with the clean surface case. 
LER1 corresponded to a severe surface roughness and LER05 to a less severe surface roughness. 
Compared to the clean surface case, the LER05 case corresponded to a 3.5% loss in AEP whereas the 
LER1 case corresponded to a 9.0% loss, both for 90 m/s MTS without any VG’s. The computational 
results for the clean surface case showed that it is practically not possible to increase AEP further by 
the addition of VG’s. In the less severe roughness case (LER05) the optimal configuration of the VG’s 
was to mount them between 16% and 38% of the blade radius assuming 70 m/s MTS. This resulted in 
an increase of AEP by 1.8%. For the severe roughness case (LER1) the increase in AEP was 4.8% 
assuming 90 m/s MTS, and 10.1% assuming 70 m/s MTS. For those cases the optimum VG 
configuration was to mount them all the way from 12% radius to the tip. Alternatively for the LER1 
case, the VG’s could be installed from 12 % to 45 % in order to increase AEP by 3.6% in the 90 m/s 
case, and by 6.4% in the 70 m/s case. In order not to lose AEP while the blade surface is in good 
condition but to mitigate some of the negative effects of surface deterioration over time, the VG’s 
would need to be installed between 22% and 36% of blade radius. This would correspond to a 4% 
recovery of AEP in the LER1 case assuming 70 m/s MTS. The results indicated that surface roughness 
may correspond to a large degradation of the power curve which to some extent may be mitigated by 
installation of VG’s. The present results also indicated that, generally, in order to install VG’s so that 
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an increase in AEP is observed, modelling of VG’s should be carried out, preferably taking into 
account the actual condition of the blade surface. This is because installation of VG’s on an incorrect 
blade span or installation of VG’s too far out on the blade may cause even a loss in AEP due to the 
addition of the extra drag associated with the VG’s for conditions where the non-VG airfoil does not 
stall. The results also indicated that the worse condition of the blade surface, the more gain may be 
obtained from the installation of VG’s. This gain may be larger for the turbines that reach constant 
RPM before they reach rated power. In future work, a similar study to the one presented in this paper 
should be carried out on other turbines in order to further investigate how different turbine designs 
influence the turbines’ sensitivity to surface roughness and to what extent it may be mitigated by 
VG’s. 
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