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Abstract. Several sources of error exist in lidar measurements for feedforward control of
wind turbines including the ability to detect only radial velocities, spatial averaging, and wind
evolution. This paper investigates another potential source of error: the upstream induction
zone. The induction zone can directly affect lidar measurements and presents an opportunity
for further decorrelation between upstream wind and the wind that interacts with the rotor.
The impact of the induction zone is investigated using the combined CFD and aeroelastic code
SOWFA. Lidar measurements are simulated upstream of a 5 MW turbine rotor and the true wind
disturbances are found using a wind speed estimator and turbine outputs. Lidar performance
in the absence of an induction zone is determined by simulating lidar measurements and the
turbine response using the aeroelastic code FAST with wind inputs taken far upstream of the
original turbine location in the SOWFA wind field. Results indicate that while measurement
quality strongly depends on the amount of wind evolution, the induction zone has little effect.
However, the optimal lidar preview distance and circular scan radius change slightly due to the
presence of the induction zone.

1. Introduction
Recently there has been great interest in feedforward control of wind turbines for rotor speed
regulation and load reduction using preview measurements of the wind provided by Light
Detection and Ranging (lidar) [1]-[3]. Although results suggest significant load reduction, the
effectiveness of preview-based control depends on how accurately lidars can measure the wind
disturbances that will interact with the rotor. Several sources of measurement error exist.
Previous controller design studies have included the effects of lidar range weighting (spatial
averaging of wind speeds along the lidar beam) and directional bias (errors caused by the lidar’s
line-of-sight not being aligned with the mean wind direction) [1, 2, 4]. Additionally, the impact
of the evolution of the wind, as it travels from the measurement location to the rotor plane, on
controller performance has been investigated using analytic models [3, 5]. A further source of
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potential error, which has not been previously investigated, is the upstream induction zone, the
region near the rotor where wind speeds slow down due to the blockage effect [6].

In this work, the impact of the induction zone on lidar measurements is investigated using
the National Renewable Energy Laboratory’s (NREL) Simulator fOr Wind Farm Applications
(SOWFA) code [7] with the NREL 5-MW reference turbine model [8]. While many aeroelastic
design codes such as NREL’s FAST [9] compute the response of a turbine given a predetermined
wind field, SOWFA models the two-way interaction between the wind and the turbine using
large-eddy simulation (LES) coupled with FAST. This allows lidar measurements to be simulated
in the presence of the induction zone. A slice of the LES wind field outside of the induction
zone is used in a separate FAST simulation together with two different lidar scenarios to reveal
measurement quality without induction zone effects both with and without wind evolution.
Measurement quality is assessed using the coherence between the lidar measurements and the
actual wind disturbances at the turbine calculated using a wind speed estimator.

The rest of the paper is organized as follows. A description of the large-eddy simulation
wind field containing the wind turbine is provided in Section 2. In Section 3 the lidar
measurement configuration is discussed. Section 4 describes the three scenarios used to
assess lidar measurement quality and Section 5 briefly describes the wind speed estimator. A
comparison of the measurement quality for the three scenarios is presented in Section 6 while
Section 7 concludes the paper.

2. SOWFA Simulation
SOWFA is a coupled computational fluid dynamics (CFD) and wind turbine structural and
system dynamics tool based on the OpenFOAM CFD toolbox [10] and NREL’s FAST wind
turbine modeling tool. It was used in this study to simulate both the turbulent atmospheric
inflow and the flow about the turbine including the axial induction zone and to simulate turbine
structural response in a fluid-structure coupled manner. This section describes the tool and the
characteristics of the particular inflow wind used in this study.

2.1. Description of the SOWFA Simulation
SOWFA, the equations it solves, and its modeling strategies are discussed briefly here, but
more details can be found in the article by Churchfield et al. [11]. The CFD solver component
of SOWFA is typically used to perform LES, a type of CFD simulation in which the larger,
energy-containing turbulent scales are directly resolved whereas the effect of the smaller scales
is modeled using a subgrid-scale (SGS) model. It solves the incompressible filtered Navier-Stokes
equations. The effects of atmospheric stratification are included through a buoyancy term that
uses the Boussinesq buoyancy approximation. In this work, the standard Smagorinksy SGS
model is used with a model constant of Cs = 0.135. We have found the standard Smagorinsky
model allows the solver to well reproduce a logarithmic wind profile with the proper choice of
model constant, vertical resolution, and grid aspect ratio following the work of Brasseur and
Wei [12]. The solver uses a bottom boundary condition that applies a shear stress found using
the Monin-Obukhov scaling laws, a common practice in LES of the atmospheric boundary layer.

The wind turbine aerodynamic effects are modeled using an actuator line representation of
the blades. Each blade is represented as a line that rotates in time. Each line is divided into
small segments, each with a center point. Velocity is sampled at the center point of each line
segment and passed to FAST. The aerodynamics module of FAST uses airfoil lift and drag tables
to compute the aerodynamic forces at each blade section. Those forces are passed both to the
structural dynamics module of FAST and also back to the CFD solver. The CFD solver applies
the computed blade forces along the actuator lines as body forces. These body forces create the
axial induction zone, the rotor wake, and blade root and tip vortices. The impact of the nacelle
and tower on the flow is not modeled.

The Science of Making Torque from Wind 2014 (TORQUE 2014) IOP Publishing
Journal of Physics: Conference Series 524 (2014) 012003 doi:10.1088/1742-6596/524/1/012003

2



The overall simulation method is to first perform a precursor LES in which the atmospheric
boundary layer flow is solved upon a laterally periodic domain of uniform resolution. Because
of the periodicity, a canonical horizontally homogeneous turbulent atmospheric boundary layer
with its turbulence and shear develops after anywhere from 10,000 s to 40,000 s of simulation
time, depending on the atmospheric stability being simulated. The typical domain size is 3–
5 km in the horizontal and 0.5–2 km in the vertical with a resolution on the order of 10 m. The
specific simulation investigated in this work has a domain size of 3 km × 3 km × 1 km with
a resolution of 12 m. Once a well developed atmospheric boundary layer is established, then
planes of inflow velocity and temperature data are sampled each time step for some duration.

These data planes are then used as inflow planes to a second simulation that contains the
FAST-coupled actuator line turbines based on the NREL 5-MW reference model with rotor
diameter D = 126 m, 90 m hub height, and rated wind speed 11.4 m/s [8]. This simulation
does not use periodic boundaries. It also uses a variable-resolution mesh that has 3 m resolution
around the turbines and their wakes, but the same 12 m resolution out in the undisturbed flow
with a 6 m resolution zone in between. The extra resolution is necessary to capture the relevant
turbulent scales that form in the turbine wakes. It is this second simulation that is used in this
work to simulate lidar sampling, to sample the actual flow, and to run FAST two-way coupled
with the fluid flow. All results in this paper are produced using 1000 s of data. From this point
forward, a two-way coupled FAST-CFD simulation is simply referred to as a SOWFA simulation.

2.2. Large-Eddy Simulation Wind Field
The wind field used in this study was previously generated in the study by Churchfield et al. [11].
It is of neutral stability, meaning there are no buoyancy effects due to atmospheric stratification,
and the surface roughness is 0.001 m, which is a low value typical of flow over water. The hub-
height (90 m) mean wind speed and turbulence intensity are 8 m/s and 6%, respectively. Velocity
contours of the mean wind field near the turbine, including the flow perturbed by the turbines
are shown in Figure 1.

Figure 1. Mean velocities near the turbine in the SOWFA wind field. The x coordinates are
expressed in meters as well as rotor diameters (D = 126 m).
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3. Lidar Measurements
Lidar measurements are simulated using the hub-mounted lidar scenario illustrated in Figure 2,
with a separate lidar corresponding to each blade. A model of the commercially available
ZephIR continuous-wave (CW) lidar is used to calculate the spatial averaging inherent in lidar
measurements [4]. Each lidar is focused on a scan circle with radius r and preview distance d
upstream of the rotor, separated from each other by 120◦ in the azimuthal direction. The lidar
focus points rotate around the scan circle at the same rate as the rotor.
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Figure 2. Lidar measurement sce-
nario and coordinate system showing
preview distance d, scan radius r, ro-
tor azimuth angle ψt, and lidar mea-
surement azimuth angle ψm. The li-
dar range weighting functions are il-
lustrated by the magenta curves.

Because the longitudinal component of the wind speed (the x direction in Figure 2) has
the greatest impact on rotor aerodynamics, an estimate of the longitudinal, or u, component
of the wind is formed from lidar measurement i by dividing the range-weighted, line-of-sight
measurement ui,wt,LOS by the x component of the lidar direction vector ~̀i = [`i,x, `i,y, `i,z]:

ûi = − 1

`i,x
ui,wt,LOS . (1)

The line-of-sight measurement ui,wt,LOS is given by integrating the dot product between the
lidar direction vector and the u, v, and w wind components (corresponding to x, y, and z,
respectively) along the lidar beam, weighted by the lidar’s range weighting function W (F, s):

ui,wt,LOS =

∫ ∞
0

W (F, s)
[
−`i,xu

(
s~̀i

)
− `i,yv

(
s~̀i

)
− `i,zw

(
s~̀i

)]
ds. (2)

The peak of the range weighting function for the CW lidar is located at the focus distance F
along the beam and has a full-width-half-maximum (FWHM) width that scales with the square
of the focus distance. An example of the range weighting function for the ZephIR is illustrated
by the magenta curves over the lidar beams in Figure 2. For the lidar parameters modeled here,
the FWHM is 12.75 m when the focus distance is F = 100 m [4].

Rather than using estimates of the wind speeds corresponding to each individual blade as
inputs to a feedforward control system, the measurements are transformed into rotor-effective
quantities that can be more easily used in controller designs. Because it is assumed that the
turbine has zero yaw misalignment, the rotor-effective wind disturbances of interest are the
time-varying hub-height wind speed and linear horizontal and vertical shear components. Using
the multiblade coordinate transformation (MBC) [13] as a function of the measurement azimuth
angle ψm, the three lidar measurements are transformed into hub-height and shear components:ûhh∆̂h

∆̂v

 =
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 , (3)
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where ûhh is the hub-height, or average, wind speed and ∆̂h and ∆̂v represent the difference in
wind speed across the scan circle in the horizontal and vertical directions. Finally, to adhere to
the shear component definitions used in FAST, ∆̂h and ∆̂v are normalized by the hub-height
component: δ̂h = ∆̂h/ûhh, δ̂v = ∆̂v/ûhh.

The main sources of potential lidar measurement errors can be categorized as:

• Range weighting errors caused by spatial averaging of wind speeds along the lidar beam.
Some spatial averaging is beneficial, however, because the wind is also spatially filtered
along the blades when aerodynamic torque and thrust are produced by the rotor.

• Directional bias errors caused by the transverse v and vertical w wind components affecting
the estimate of the u component, as shown in equation 2. This error source diminishes as
the scan radius decreases or the preview distance increases, which both cause the y and z
components of the lidar direction vector to become smaller.

• Wind evolution errors caused by the deviation from Taylor’s frozen turbulence hypothesis,
which implies that wind speeds remain unchanged as they advect downstream at the mean
wind speed [3, 5]. Wind evolution errors become more significant as preview distance
increases, allowing more time for the measured wind speeds to change.

4. Measurement Scenarios
The aim of this work is to examine the relative impact of the induction zone on measurement
quality compared to the other error sources listed in the previous section. A baseline case is
created to reveal measurement quality with neither wind evolution nor induction zone effects.
The second scenario introduces wind evolution errors while the third scenario adds induction
zone effects. The three measurement scenarios investigated (illustrated in Figure 3) are:

• Scenario I: FAST, No Evolution. A 144 m × 144 m (1.14 D × 1.14 D) slice of wind speeds
in the yz plane, at an imaginary turbine location 315 m (2.5 rotor diameters) upstream of
the turbine location in SOWFA, where induction effects are negligible, is extracted from
the LES wind field and used as an input to a separate FAST simulation with the NREL
5-MW turbine model using the equilibrium inflow setting [9]. The hub-height and shear
wind disturbances at the turbine are estimated using turbine outputs from FAST. Lidar
measurements are simulated in the original SOWFA wind field such that the lidars measure
at the extracted wind field location but are located behind the imaginary rotor plane by an
amount equal to the intended preview distance. This way, the proper range weighting and
directional bias effects are included, but wind evolution does not occur.

• Scenario II: FAST, with Evolution. This scenario is identical to Scenario I, except that the
lidar is located at the hub location of the imaginary turbine and measurements are taken
at the intended preview distance upstream of the turbine. This allows the wind measured
by the lidar to evolve before it reaches the location of the extracted wind field.

• Scenario III: SOWFA, with Evolution. Lidar measurements are simulated for a lidar located
at the hub of the original 5-MW turbine in the SOWFA simulation. Thus the lidar measures
wind that is disturbed by the rotor induction and that undergoes wind evolution. The wind
disturbances at the rotor are estimated using outputs from the original turbine in SOWFA.

5. Wind Speed Estimator
The hub-height and linear shear wind disturbances that interact with the turbine are estimated
using a Kalman filter described in [14] based on a linear model of the NREL 5-MW reference
turbine created using FAST’s linearization capabilities. Five degrees-of-freedom are included in
the linear model: generator rotation, the first tower fore-aft bending mode, and the non-rotating
MBC components [13] of the first flapwise blade modes. The disturbance components uhh,
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Figure 3. The three lidar measurement scenarios that are investigated.

δh, and δv are estimated using measurements of generator speed, nacelle fore-aft acceleration,
and the three out-of-plane blade root bending moments. In below-rated conditions without
blade pitch actuation, as in the SOWFA simulation investigated here, the resulting wind speed
estimates are highly correlated with the true disturbances up to a bandwidth of 1 Hz.

Examples of the estimated wind speed disturbances and corresponding lidar measurements
with scan radius r = 0.75 R (rotor radius R = 63 m) and preview distance d = 0.7 D for
measurement scenario III are shown in Figure 4. The low hub-height component measurement
is caused by the velocity deficit in the induction zone. Note the strong three-times-per-revolution
(3P ) component present in all disturbances caused by rotational sampling of the turbulence [14].
Power spectra of the estimated wind disturbances are plotted in Figure 5 for the FAST simulation
used in scenarios I and II along with the SOWFA simulation from scenario III. As suggested by
the time series, there is a peak in the power spectra at the 3P frequency 0.45 Hz as well as at
the 6P frequency 0.91 Hz due to rotational sampling of the turbulence by the blades. Because
the linear model used in the Kalman filter estimator does not account for dynamic inflow [9],
the magnitude of the wind fluctuations in the SOWFA simulation is underestimated slightly.
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6. Measurement Simulation Results
Measurement quality is determined by computing the coherence between the lidar measurements
and the estimated disturbances at the turbine. Coherence describes the correlation between
two signals as a function of frequency, taking on values between 0 and 1, with 1 indicating
perfect correlation [15]. Measurement quality for the three wind components is assessed for
the three different scenarios using a variety of lidar scan radii r and preview distances d. The
measurement azimuth angle (shown in Figure 2) is determined so that each lidar measures the
wind that will reach its corresponding blade, using the formula: ψm = ψt +ωt · (d/Uhh + toffset),
where ωt is the rotational rate of the rotor in radians/s, Uhh is the mean hub-height wind
speed, and toffset is a tuning parameter that is used to correct for the arrival time of the wind
potentially differing from d/Uhh. In the results presented here, optimal values of toffset are
found for each combination of scan radius and preview distance investigated. Note that the
achievable measurement coherence depends on the specific lidar scan scenario. Therefore, the
results presented here cannot necessarily be extended to other lidar configurations.

6.1. Optimal Measurement Parameters for Individual Wind Components
When optimizing the measurement quality of the three individual wind components, the chosen
objective is to minimize the mean square error (MSE) between the lidar measurements and the
wind disturbances that arrive at the turbine. As explained in [15], the minimum achievable MSE
after properly filtering a lidar measurement to form an estimate ŵt of the true disturbance wt,
can be defined in the frequency domain as:

(wt − ŵt)
2 =

∫ fmax

0
Stt(f)

(
1 − γ2tm(f)

)
df, (4)

where Stt(f) is the power spectrum of the wind disturbance, γ2tm(f) is the coherence between
the lidar measurements and the true disturbance, and fmax is the imposed bandwidth of the
MSE calculation. The value fmax is chosen to be 1 Hz because the wind speed estimator is only
reliable up to this frequency and, for the NREL 5-MW reference model, the bandwidth of the
blade pitch actuators, which would be used in a lidar-based control system for load reduction,
is approximately 1 Hz [1, 2]. Minimizing the MSE expression in equation 4 over all scan radii r
and preview distances d is equivalent to maximizing the objective function:

J (r, d) =

∫ fmax

0
Stt(f)γ2tm(f)df. (5)

Knowledge of the mean velocity deficits in the induction zone can be used to estimate the
equivalent freestream velocities based on the lidar measurements. But the corrections do not
affect measurement coherence, and thus do not reduce MSE when optimal filtering is employed.

So that the results of scenario III can be fairly compared with scenarios I and II, the wind
disturbance power spectra from the FAST simulation, which are expected to be more accurate
due to the lack of dynamic inflow, are used for Stt(f) when calculating J (r, d) in all scenarios.
Figure 6 shows this objective function plotted against r and d for the three wind disturbance
components and three measurement scenarios, normalized by the maximum value for each case.

Table 1 displays the optimal scan radii and preview distances corresponding to the maxima
in Figure 6, i.e., the parameters that minimize the MSE of the wind measurements for all
components and scenarios. Additionally, Table 1 lists the normalized objective functions that
are achieved by these r and d. The objective integrals are normalized by the measurement
quality of scenario I as well as normalized by the integrals that would occur if measurement
coherence were 1 at all frequencies. The first normalization allows scenarios II and III to be
compared to the baseline case without wind evolution and induction zone effects. The latter
normalization describes how close all scenarios are to representing perfect measurements.
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Figure 6. Measurement quality as a function of r (in rotor radii R) and d (in rotor diameters
D) for all three disturbances (rows) and all measurement scenarios (columns).

Table 1. Optimal scan radii (in units of rotor radii R), preview distances (in units of rotor
diameters D), and measurement quality integrals normalized by their values in scenario I as well
as by their values assuming perfect measurement coherence (in parentheses).

Scenario
r (R)

uhh δh δv

d (D)
uhh δh δv

Measurement Quality
uhh δh δv

I 0.75 0.75 0.75 1.1 1.2 1.2 1.00 (0.91) 1.00 (0.87) 1.00 (0.84)
II 0.75 0.75 0.80 0.7 0.8 0.7 0.93 (0.85) 0.89 (0.77) 0.86 (0.72)
III 0.70 0.70 0.70 0.6 0.7 0.7 0.95 (0.86) 0.91 (0.79) 0.88 (0.74)
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6.2. Discussion of Results
Figure 6 and Table 1 reveal that lidar scan radii between 70% and 80% blade span yield the
best measurement correlation. Lidar measurements at these scan radii, where aerodynamic
torque production by the blades is the highest, are most representative of the rotor-effective
wind disturbances. For scenario I, the optimal preview distances are between 1.1 and 1.2
rotor diameters. Shorter preview distances suffer from directional bias errors because of large
measurement angles. But greater preview distances cause the lidar probe volumes to become
too large, resulting in excessive spatial averaging [4]. As shown in Table 1, when wind evolution
is introduced to the measurement simulations, the optimal preview distances are reduced to
between 0.7 and 0.8 rotor diameters (Scenario II) and between 0.6 and 0.7 rotor diameters
(Scenario III). The wind evolves more over greater distances, so measurements closer to the
turbine, while producing larger directional bias errors, are overall more correlated with the true
disturbances. In addition, greater preview distances exaggerate errors caused by wind shear
(wind speeds measured at different heights reach the turbine at different times) and uncertainty
in the rotor azimuth angle when the wind arrives at the turbine due to variable rotor speed.

As revealed in Table 1, measurement correlation is higher for the hub-height component
than for the shear components in all three cases. This is likely due to the transverse v and
vertical w components corrupting the shear measurements more than the hub-height component
measurements, where they are averaged out more. Figure 7 shows the measurement coherence
curves corresponding to the optimal scan radii and preview distances for all scenarios. When
wind evolution is introduced to the simulations (Scenario II), measurement correlation decreases
by 7–14%. This is most evident at the peaks around the 3P and 6P frequencies. However,
when induction zone effects are included, measurement correlation increases slightly. This
improvement is largely due to the increased measurement coherence around 0.1 Hz in all
components. For comparison, measurement coherence curves for scenario III using the optimal
scan parameters from scenario II, without the induction zone, are also plotted in Figure 7.

It is difficult to determine exactly what causes the slight improvement to measurement quality
in Scenario III. It was found that the upstream turbulence intensity is only affected by the rotor
when less than a quarter of a rotor diameter upstream of the turbine. Therefore, it is unlikely
that any decrease in turbulence improves measurement quality. However, Figure 1 shows that
as the wind approaches the rotor, it is deflected out toward the edge of the rotor disc. So in
order to measure the wind that reaches the rotor at 75% to 80% blade span, which is optimal for
Scenario II, the lidar should actually be focused at slightly smaller scan radii. The smaller scan
radii allow for shorter preview distances, while only slightly increasing the measurement angles,
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and thus not increasing directional bias errors by much. The shorter preview distances, in turn,
result in less wind evolution which likely accounts for the higher measurement coherence.

7. Conclusions
Results from the three lidar scenarios investigated suggest that wind evolution is a significant
source of error while the induction zone, rather than acting as a further error source, allows
marginally better measurement coherence with slightly different optimal lidar scan parameters.
However, only a 1000 s period of data was analyzed, and more simulation results should
be obtained before concluding that the presence of the induction zone indeed significantly
improves measurement performance. Furthermore, the results presented here were obtained
using simulations with perfect yaw alignment, knowledge of the true arrival time of the wind,
and the assumption that the measurement correlation statistics, necessary to calculate the
optimal filter, were known a priori. In reality, with time-varying wind conditions, such an
ideal measurement scenario is difficult to obtain; further work is necessary to evaluate lidar
measurements in more realistic conditions. Simulations using different wind conditions should
also be investigated to determine how measurement coherence is affected by stability, mean
wind speed, and turbulence intensity. Finally, a more practical objective function should be
introduced to find the single set of scan parameters that minimizes the combined impact of all
three wind disturbances on turbine loads when using feedforward control.
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