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Abstract. General one-loop integrals with arbitrary mass and kinematical parameters in d-
dimensional space-time are studied. By using Bernstein theorem, a recursion relation is obtained
which connects (n + 1)-point to n-point functions. In solving this recursion relation, we have
shown that one-loop integrals are expressed by a newly defined hypergeometric function, which
is a special case of Aomoto-Gelfand hypergeometric functions.

We have also obtained coefficients of power series expansion around 4-dimensional space-time
for two-, three- and four-point functions. The numerical results are compared with "LoopTools"
for the case of two- and three-point functions as examples.

1. Introduction

For discovery of the beyond standard model, we need to know the precise theoretical prediction
of standard model. For Large Hadron Collider at CERN and the international linear collider,
at least next-to-leading order(NLO) electroweak corrections are necessary. However, it is not
easy to calculate Feynman integrations with highly accuracy even for one-loop level. There
appear many kinematical parameters including masses, momenta of particles, and space-time
dimension. This means that the loop integrals are analytic functions with singularities on a
multiple dimensional complex vector space. It is difficult to obtain the numerical accuracy in all
kinematical region by a simple numerical approach. Since the numerical stability of an expression
is connected to its analytic properties, suitable analytic expressions of one-loop integral are still
important.

It is known that any loop integrals are expressed by GKZ-hypergeometric functions|[1].
However, theses functions are so general extension of hypergeometric function that it is not easy
to obtain numerical values. It is desirable to find a subset of GKZ-hypergeometric functions
which corresponds to specific loop integrals to be calculated.

The analytic properties of hypergeometric functions, such as position of singularities, have
been investigated for many hypergeometric functions. Since these singularities correspond
to physical singularities or large cancellations in numerical calculations, information about
singularities helps us to obtain accurate numerical results.

There are various methods to express one-loop integrals by hypergeometric functions|2, 3,
4, 5, 6]. In this article, we show a method to obtain analytic expressions of n-point functions
with arbitrary kinematical parameters. Our method is based on Bernstein theorem [7] (see also
[8]). This theorem implies that for given polynomial D of variables x = (z1, ..., %,), there exist
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differential operator P and polynomial b(s) of parameter s such that
P(9, 3, 5D+ () = b(s)D* (x), (1)

where P is a polynomial of z, differential operator 0 = (1, ..., 0, ), and parameter s. Applying
this theorem to the integrands of one-loop integrals, we obtain a recursion relation. In solving
this relation, we show that one-loop integrals are expressed by newly introduced hypergeometric
function G,,. This function is found to be one of Aomoto-Gelfand hypergeometric functions (or
general hypergeometric functions on complex Grassmannians) [9, 10, 11] which make a subset
of GKZ-hypergeometric functions.

Starting from our general expression of one-loop integral, two- and three-point function are
re-expressed in a linear combination of Gauss hypergeometric function F and Appell’s function
F35[12], respectively. For the case of scalar integral of four-point function, we have expanded
the analytic expression around 4-dimensional space-time. The result is expressed by Lauricella’s
function Fp[12] up to the finite order of space-time dimension d = 4 — 2e.

We have numerically calculated two- and three-point function as examples and have compared
the results with LoopTools[13].

2. Formulation
Let us consider the one-loop (n+1)-point function denoted by I,,+;1. After performing integration
of é-function, the Feynman parameter integration of I,,41 is written as:

L) = [ daDi, (2)
1n n 1 n
Dp(z1,.ccitp) = —5 Z qu-kflfjmk +3 Z (m? +mi)zja,
J,k=0 J,k=0
1 n
= 5 Z Aijxixj + Z Bix; +C
i,j=1 i
1
= i(Aa;, z)+ (B,z)+ C, (3)
where m; are masses of the propagators, q;, = — Zf:j 41 Pi with external momenta p;, z; are

Feynman parameters with g = 1 — ijo xj. Here, A, refers to n-dimensional simplex and
A;; = 0,0;Dy, B; = 0;D,,(0) and C = D), (0). Parameter s depends on the space-time dimension
d. If d = 4 — 2¢ are chosen, we find s = 1 — n — € for the standard scalar model.
Let us define operator P by
1

1
P=—(s+2)5 + ﬁ(l‘rlapm 9), )

where E, = (A~'B, B)/2 — C. We can find the following relation:
PO = (s +1)Dj. (5)

This is the explicit expression of Bernstein theorem for scalar one-loop integral and polynomial
b-function is found to be s + 1. Applying Eq.(5) to Eq.(2) iteratively with partial integrations,
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we obtain

In—i—l (5) = Jn—i—l,m(s) + Kn+1,m(5)7 (6)
1 s (S+n/2+1)j

In+1,m(8) 2(s+1)E, j;o (s +2)j
nx -1 s+1 _& 7
x/nd Ek:ak{(A D)k DS < En> } (7)

where (a); =a(a+1)---(a+j—1) is Pochhammer’s symbol.

If we choose the appropriate parameter region, the second term K1 ,m,(s) goes to be zero
in the limit m — oo. The first term is surface integration and can be integrated once easily.
The remaining integrations are expressed by n-point functions. We obtain a recursion relation
between (n + 1)- and n-point functions:

1K (s+n/2+1); ¢ 1\
Lni1(s) = 52 W <_En> Zh kIn 0(n; k)(s +Jj+1), 9)
=0

where coefficients h,,) ;. are rational functions of kinematical variables. The suffix p(n) = A,
and p(n; k) represents a (n — 1)-dimensional simplex which is obtained by eliminating k-th
vertex and faces attaching to the vertex from the original n-dimensional simplex, which appears
as a part of the boundary of the original integration domain. In a similar way, we define
p(n; k1, ke) = p(p(n; k1), k2). Using Eq.(9) repetitively, Eq.(2) eventually depend only on the
remaining vertex, in which no integration is left. The final formula of (n + 1)-point function is

—_

n

1

In—‘rl Z Z Z D 7’L knakn 17-">k ) h p(n).k "hp(nk )skin— 1"'hp(n;k:n,.--7k2)7kl
kn=0k,_1=0 =0
Z & 5+n/240); (s4gnt (0 —1)/242);

(5+1)' +1 (S+jn+2)jn,1+1

(s+int - +j2+1/2+n),
(s+in+-+j2+n); 4
X( D(n;kn,kn_l,...,k1)>fn+1( D(n;kn,kn_l,...,k1)>jn-1“
Eymn) Epnikn)
< D(n;kn,knl,...,k1)>ﬂ“
Ep(n;kn,...,kg) '
Here, D(n; ky, kn—1, ..., k1) is the value at the vertex k1 which does not appear in the list
(kn,kn—1,--+ ,k1). The right-hand side of Eq.(10) shows that it is expressed by a kind of
hypergeometric series. We call this hypergeometric series function G,, which is defined by
Eq.(13) in the next section. Using this function, one-loop scalar integral becomes

kn,kzn sy k)5
Int1(s) = 2ns+1 Z Z Z i ; 1 2

knfokn 1=0 k1=0 p(n;kn,...,k‘z)

(10)

th(n)vk"hp(n;kn)aknfl U hp(n;kn,...,kg),kl

D(n;k‘n,k}n_l,...,kl)> ( D(n;kmkn_l,...,kl)))
n | o 557 (— N (11)
( Eym) Bk, ko)
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where
a=(1,--,1), 5:(1/27"'71/273_'_”/2"’_1)7 y=s+n+1 (12)
n n—1

3. Gp-functions
In this section, we discuss the properties of G,, function. This function is defined by:

N )jlnk 1(25 kﬂf Sty de
Gn(a, By v; @) Z Z Z — Hk (kB T 1]Z'Hiv (13)

In=0jn—1=0 J1= 0 =1

where x = (x1,...,x2,) € C" are variables, a = («a1,...,a,) and 8 = (051, ..., B,) are complex
vectors, and y is a complex parameter.
Euler type integral representation of G,, is obtained as:

i) — L'(y) n k-
Gnla, B;v;x) = T T T =S / duHu 1

j=1 k=1 Ctk)

x(l—zn:u])V ke ens 1H(1—ijuj> o (14)

J=1

The integrand is a product of powers of linear factors of integration variables, while the original
integrand of 1,1 is a power of quadratic term. This representation shows that this function is a
member of a class of hypergeometric functions, which are called Aomoto-Gelfand hypergeometric
functions or hypergeometric functions on complex Grassmannians. This fact and their analytic
properties give us important information for numerical calculation. One can easily show the
following formulae:

e differentiation (with k-th unit vector ey)

GulasBivia) = 3 G+ er, B+ uiy + Lia). (15)

9
oxy —~

e recursion relation

gy = S @y, (B,
Gn(a7ﬁ777 ) — jnzzo (7)Jn.7n'
['(y)
[(a)T(y — a1)

1
X / dw w11 — w) (1 - $1w)_2j:1ﬂjGn—l(@,aﬂ’VY/%x/)- (17)
0

:E%"Gn,l(o/,ﬁ’; v 2') (16)

Tensor integrals are obtained by differentiating I,,11 in terms of mass parameters. Eq.(15) shows
that tensor integrals are also expressed by G,.
Based on the above results, the problem of calculating one-loop integral is converted to one
of establishing methods of expansion around 4 space-time dimension and numerical evaluations.
We show some samples of scalar case in the next section.

4. Calculations of n-point functions
In this section, we will discuss how to evaluate and expand G,, functions. Let us discuss in detail
for 2-, 3- and 4-point functions separately.
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4.1. Two-point function

Let’s first consider the two-point function. This is a good example of the understanding of
how to evaluate Gy,. From the formula Eq.(10), the scalar two-point function is expressed by
G functions with @« = 1, f = s+ 3/2 and v = s + 2 . Function G; is nothing but Gaussian
hypergeometric function:

(1), (s+3/2), 27
Gi(l,s+3/2;s 4+ 2;z) = ()J(Q/)in':F(l,s+3/2,s+2;x). (18)

Combining the kinematical factor, we obtain

(p* +mi — m3)(mi)**! 3 4p*mi
I(s) = F1,s+2,s+2—
2(s) (s+ 1B SE T AT
(P +m3 — mi)(m3)**! 3 4p*m3
Fl1 = 2; — 19
+ T DE St st E-—p= ), (19)
where Ey = (p? — (m1 +m2)?)(p? — (m1 — m2)?). The case of s = —e corresponds to the usual

dimensional regularization d = 4 — 2¢. It is more convenient for the expansion when half-integer
parameter is converted to integer. By using identities of F', we obtain

2\s _ 2\s _
L(s) = f;(;l)p <1,—s;s—|—2;§;> + (15;)(12)1; (1,—s;s+2; 1_2) . (20)

where &4 = (p? —m3 +m3+/E1)/(2p?). After the conversion, G can be expanded in arbitrary
order of e with multiple polylogarithmic functions[14, 15].

With the known analytic properties of F', it is found that two-point function may only be
singular when €1 = 0, 1, co and & = &;. These cases correspond to massless or on-shell limit.
Let us investigate the case both of masses are taken massless limit as an example, where £ — 0
and {4 — 1. The first term in Eq.(20) goes to zero, but second term is not well-defined at this
limit. However, with using identities of F', we can transform the expression into the well-defined
form at this limit under the condition Re(s) > 0:

m1,mo—0 mi,me—0 S+ 1 5

where B is beta-function. This means that we can select appropriate representations in terms
of kinematical conditions.

. L (=pPy)® cero. LY L2y
lim I(s) = lim ~——>F|s+1,—-s;5s+2;,— | =(—p°)°B(s+1,s+1),(21)

4.2. Three-point function

Eq.(11) shows that scalar three-point function is obtained as a linear combination of Gy. It is
expressed as

2 3

1
Ty 2 2 G (L1 (12,8 4 208 4 3121 o) T ) - (22)

13(5) = (S—I— 1)( =

Function G is equivalent to Appell’s function Fj:

Ga((ou, a2), (B, B2), 15 @1, 22) = (1 — 1) Fy (a17a277 — b1 — B2, B2,7; mlxi 1,562>- (23)
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When a1 = as = 1, G5 reduces to Appell’s function Fj. It is also convenient when the half-
integer parameter is transformed to integer as same as the case of two-point function. We apply
nontrivial identity:

Fl(auﬁ)ﬁ/)v;xvy)
z 2z 1 1

=1 aF (7 - ]-7]-_ 72 _]-7 /7 /; 72y ) 7777)7 24
(1+2)*Fpla;a—v+ a,2f 567Z1+21+zv+v, (24)

where z = (1 —V1—-2z)/(1+V1—2) ,ve = (1+vV1—2)/(yF Vyly —x)) and Fp is on of
Lauricella’s functions[12]. For the case s = —1 — ¢, Eq.(22) reduces to
G9 — Fj(half-integer) — Fp(integer) — (expansion) — F} (integer)
— multiple polylogarithmic functions in arbitrary order of e.
Investigating the limit € — 0, 1/e pole appears from 1/(s + 1) of Eq.(22) for both massive and

massless cases. However, this poles canceled out when all contributions are summed up for the
massive case. So we can obtain the value of integration in this limit.

4.8. Four-point function

After performing §-function integration, three Feynman parameters remain on the four-point
function.
In this case, G5 appears in Eq.(11).

I'(7)
(o) (o) D(a3)T(y — a1 — g — ag)

3 a1—1 ao—1 az3—1 y—ap—az—az—1
X/A d°u ul T uy? T gt (1 — g — ug — ug)
3

Gs(a, B;v;x) =

x (1 — xlul)_ﬁl(l — Ul — :cqu)_ﬁz(l — T1U] — ToUy — $3U3)_B3. (25)

For scalar integral case, parameters take the values « = {1,1,1}, § = {1/2,1/2,s + 5/2},
v=s+4, x = {x1,29,23}, and s = —2 — € for d = 4 — 2¢. This function can be written in a
linear combination of Fp up to O(e), which corresponds to finite order of I, since

111
G3 <{1,1,1},{2,2,2—6};2—6,I1,$2,.’L‘3>
1—vI—=z 1 1 1

1 — —
=01F1<1,1,;2;’”2 S R

2 1’2—1’.%'3—1’

Tr]p — T2 T1 — I3

)

1
+03FD 13_67177;2_6;271)
2 1—1‘2

) +0(e),

1—1’3

where the coefficients C;’s and 7,;’s are algebraic functions of x1, 2, and z3. The half-integer
parameters are converted to integers by using extended identities from Eq.(24).

4.4. Summary numerical calculation

We have compared the numerical results between our method and LoopTools[13]. We show the
compared results of two- and three-point function in Figs.1 and 2, respectively. The results are
consistent in satisfactory accuracy.

11 1
+02FD <1>2€717177;2; ’ 3 ’ 3 )
) 272 2 m M2 M3 M

(26)
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5. Conclusion and discussion
In the discussion of Sec.2, it is necessary to select appropriate kinematical region in order to
make Eq.(8) vanishes at the limit m — oco. However, we can show the following identity of

3 T T T 4 .
e o Re[Hypergeometric] e e Re[Hypergeometric]
2l — Re[LoopTools] ) e = Sl Re[LoopTools] ) OV VIRV,
X X Im[Hypergeometric] o X - X X Im[Hypergeometric] X
14| —- ImlLoopTools] o ] - - Im[LoopTools]
X< 2
/
’
0 1
1k
_1k 1
0
_ob 1
_1k
3t
_a 1 -2
_ I | | | _3 I H H
100 -50 0 50 100 150 200 250 300 —100 -50 0 50 100
2 2
P P

(a) m? =10, m3 =1 (b)ym2=1,m?=1.1

Figure 1. Comparison of numerical results with LoopTools for two-point functions in two
parameter sets (a) and (b). Circles and crosses are the numerical results of real and imaginary
part of our calculation, respectively. Solid and dashed lines are the results of real and imaginary
part which are obtained from LoopTools, respectively.

0.030

0.025

0.020

0.015

0.010

0.005

0.000

e o Re[Hypergeometric]
— Re[LoopTools] L -
> X Im[Hypergeometric] : : VSR = 1
- - Im[LoopTools] . X X
s
AT
L s X 1
>
e KT
- e
lo—o—0—0—o @ '_FF—H
H H H H H H H H
-60 -40 -20 0 20 40 60 80 100
2
Py

0.12f

0.10

0.02

0.00

e e Re[Hypergeometric]
— Re[LoopTools]

X X Im[Hypergeometric]
- - Im[LoopTools] 1

S
—60 -40 -20 0 20 40 60 80

(b) p3 = —10, p3 = —100,
mi=1,m3=2m3=3

Figure 2. Comparison of numerical results of three-point functions for two parameter sets
(a) and (b). Circles and crosses are the numerical results of real and imaginary part of our
calculation, respectively. Solid and dashed lines are the results of real and imaginary part which
are obtained from LoopTools, respectively.
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Gauss hypergeometric function:

R S = "o geg D
D"_2(3+1)Enzk:ak [(A aDn)kF(l,s+2+1,s+2, Eﬂ)] (27)

From this identity, one can derive recursion relation Eq.(9) and confirm it holds in all kinematical
region[16].

We have shown that general one-loop integral is expressed by G,, one of hypergeometric
functions on complex Grassmannian. Especially, scalar two- and three-point functions are
expressed in terms of Gaussian and Appell’s functions, respectively for any kinematics variables
and space-time dimension. Four-point function is expressed in Lauricella’s functions up to finite
order for arbitrary kinematical parameters. We have also shown the sample numerical calculation
in terms of two-, and three-point functions and results are consistent with LoopTools package.

Acknowledgment

The authors wish to thanks to the members of Minami-tateya group for useful discussions.
Especially, we would like to thank to Y. Shimizu and J. Fujimoto for their focus on Bernstein
theorem and suggestions.

References
[1] Gel'fand I M, Zelevinsky A V and Kapranov M M 1990 Soviet Math. Dokl. 40 239-243
I.M. Gel'fand, A.V. Zelevinsky and M,M, Kapranov, 1990 Adv. Math. 84 255-271
2] Davydychev A 11991 J. Math. Phys. 32 1052-1060
Davydychev A 11992 J. Math. Phys. 33 385-369
[3] Tarasov O V 1996 Phys. Rev. D. 54 6479-6490
Fleischer J, Jegerlehner F and Tarasov O V 2003 Nucl. Phys. B 672 303
] Duplancic G and Nizic B 2001 Eur. Phys. J. C 20 357
] Kurihara Y 2006 Eur. Phys. J. C 45 427
| Kaneko T 2010 PoS CPP 2010 010
7] See for example, Coutinho S C 1995 A Primer of Algebraic D-modules Cambridge University Press
] Tkachov F V 1997 Nucl. Instrum. Meth. A 389 309
| Aomoto K 1977 J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 49-61
Aomoto K and Kita M 2011 Theory of Hypergeometric Functions Springer
[10] Gelfand I M 1986 Soviet Math. Dokl. 33 573-577

[12] 1953-1955 Erdéley A, Magnus W, Oberhettinger F, and Tricomi F G, Higher transcendental functions, I-III
Bateman manuscript Project McGraw-Hill
[13] Hahn T LoopTools http://www.feynarts.de/looptools/
[14] Moch S and Uwer P 2006 Comput. Phys. Commun. 174 759
[15] Kalmykov MY, . Ward B F L and Yost S 2007 JHEP 0702 040
Kalmykov M Y, . Ward B F L and Yost S 2007 JHEP 0711 009
[16] Kaneko T and Watanabe N in prepararion



