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Abstract: In this contribution, we examine the influence of emitter conditioning for a <111> 

tungsten cold field emission gun on the emission and beam characteristics of a double 

aberration corrected electron microscope. By varying the post flash build-up parameters we can 

control the effective emitter tip radius. A sharp emitter yields an energy resolution of 0.31eV 

but relatively low beam current whereas an increased tip radius results in a reduction in energy 

resolution to 0.4eV but much higher potential beam current. Consequently, careful control of 

the build-up parameters can be used as a means of tailoring the emission to suit specific 

instrumental requirements. 

1. Introduction 

Recent developments in commercial field emitter design have seen a renaissance of cold-field emitters 

(c-FEG) in modern aberration corrected TEM and STEM instruments to optimise brightness and 

energy resolution [1]. The performance of these emitters is strongly dependent on their geometry and 

the level of vacuum around the tip. Nevertheless, even with reasonable gun vacuum levels of 10
-9

 Pa 

or better there is still a need to periodically recondition or “flash” the electron source to remove 

residual gas absorbed on the tip surface [2]. Conventional high-flash were the tip is heated to ~2400 K 

results in the removal of the absorbed surface gas but can effectively blunt the tip and significantly 

reduce the brightness of the electron source for a given extraction potential. The geometry of the 

emitter tip can however be restored by a build-up process using a thermal field treatment [3] in which 

tip is heated under the influence of a strong electric field. In the case of a tungsten <111> single 

crystal, the build-up process results in the diffusion of surface atoms at the apex of the tip to form 

{110} and {211} side facets the latter of which ultimately intersect to produce a sharp pyramid 

truncated by the (111) plane.  

In this report, we investigate the effect of varying the post flash build-up parameters applied to a 

<111> tungsten c-FEG on the emission characteristics, extraction potential, probe current stability and 

primary energy spread. 

2. Experimental methods 

The W <111> c-FEG utilised in this study is fitted to a JEOL Z3100F-R005 double aberration 

corrected TEM/STEM normally operating at 300kV.  The periodic “flashing” procedure involves an 

initial high-flash (HF) in which the tip is raised to a high temperature by passing a current of 2.2A for 

3 seconds. The subsequent build-up (BU) treatments investigated are detailed in Table 1. In each case 
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the emission current and corresponding probe current was measured as a function of extraction voltage 

(A1 kV) with a constant second anode (A2) potential of 4.6kV.  The emission current was determined 

by indirect measurement of the potential across the appropriate test point of the emission feedback 

control board. This was necessary as the emission current displayed in the microscope operating 

software (TEM-COM) has a minimum increment of 1µA and indicates zero for emission currents 

below 1µA. For consistency with our previous studies the corresponding probe current was measured 

in CBD mode α1 with a nominal spot size of 1.2nm and a 150µm condenser aperture using a Keithley 

2635 test meter via the small diameter viewing screen, previously calibrated using a Faraday cup at the 

specimen plane. Emission patterns were recorded using a TV rate camera positioned at the gun 

inspection port focused onto the surface of the perforated second anode. 

 

Table 1: Emitter conditioning parameters investigated in this study. 
 

 Current (A) A1 Bias (kV) Time (Sec) 

High Flash 2.2 - 3 

BU 1 2.2 -2.70 10 

BU 2 2.1 -2.60 10 

BU 3 2.05 -2.55 10 

BU 4 2.0 -2.50 10 

 

To assess the influence of tip conditioning on the energy spread in the primary beam an energy-loss 

spectrum was acquired immediately after build-up in each case for a series of equivalent probe current 

by recording the full width half maximum (FWHM) of the zero energy loss spectrum using a Gatan 

Tridium GIF with an entrance aperture of 1mm, dispersion of 0.01ev/pixel and an exposure of 0.1 

second. The relative drift in beam current and gun vacuum was determined as a function of time 

immediately after build-up (BU-1) treatment. 

3. Results and Discussion 

A series of emission patterns for the different build-up conditions studied is given in Figure 1 with the 

respective details of the extraction potential, emission current and corresponding probe current shown 

in parenthesis in each case. In figure 1(a) we observe the classic three-fold symmetry of the <111> W 

field emission pattern.  
 

  
 

Figure 1:  C-FEG emission patterns for the different conditions immediately after build-up (a) high-

flash only (2.00kV, 4.08μA, 6.25nA) with the low order emitting facets indexed, (b) BU-1 (1.05kV, 

5.05μA, 397pA), (c) BU-2 (1.40kV, 5.03μA, 1.35nA), (d) BU-3 (1.5kV, 4.94μA, 4.3nA) and (e) BU-4 

(1.79kV, 4.26μA, 1.3nA). Note - pattern (a) is x6 magnified with respect to the subsequent patterns to 

show detail. 
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Figure 2: (a) Emission current as a function of extraction voltage, (b) the corresponding Fowler-

Nordheim plots. 

 

Plots of emission current versus extraction potential are given in Figure 2(a) with the corresponding 

Fowler-Nordheim (F-N) plots shown in Figure 2(b). An estimate of the tip radius can be directly 

extracted from the F-N field emission theory which shows the slope of the ln(I/V
2
) versus 1/V plot to 

be -6.8 x10
7
 Φ

3/2
 αkr  [4,5] where, Φ is the work function (eV) (4.47eV for <111> tungsten), α is the 

Nordheim image correction term (which in this instance is assumed to be unity [4]), k is the field 

reduction factor and r is the tip radius (in cm). The exact value of k can vary significantly and depends 

on the actual tip geometry with reported vales between the limits of 3 for blunt tips to 35 for sharp tips 

[6]. Table 2 shows the estimated tip radii from the F-N plots in Figure 2(b). The value of kr is 

presented to provide a relative comparison, while the actual estimated tip radius is given for the limits 

k=3 and k=35. The estimates clearly illustrate the sharpening of the tip with increasing heating current 

and applied reverse potential.  

 

Table 2: Estimation of the tip radii from the linear fits of the Fowler-Nordheim plots shown in Fig 2b. 
 

 BU1 BU2 BU3 BU4 Flash 

kr  (nm) 160 175 278 431 505 

kr (k=3)  (nm) 53 58 92 144 168 

kr (k=35) (nm) 4.6 5.0 8.0 12.0 14.4 

 

 The beam current at the specimen as a function of extraction potential is given in Figure 3(a). From 

Table 2 it can be observed that as the tip radii decreases, the required extraction potential decreases 

however, we find that for sharper tips the total beam current is limited by the emission current, Figure 

2(a) since the latter is limited within the instrument software to 20μA and hence the extractor cannot 

simply be increased indefinitely. The influence on the energy spread is presented in Figure 3(b). With 

the exception of the high-flash only condition, the value of the FWHM of the zero energy loss peak is 

relatively consistent for a given value of the beam current, although the best energy resolution 

(0.31eV) is still achieved using the sharpest tip (BU1) while a ΔE of 0.45eV can be attained for less 

sharp tips (BU3, BU4) while maintaining significantly higher beam currents. 

Figure 4(a) shows the gun vacuum as a function of beam-on time. While there is some slight initial 

degradation, likely due to out-gassing of the second anode aperture, the major component relates to the 

differential pressure between the gun and column. Nevertheless, the increase in gun pressure tends to 

plateau after 2-3 hours, remaining better than 6.5x10
-9

 Pa. Analysis of the F-N plots for the tip 

described in Figure 4(b) after prolonged periods without flashing reveals that the relative value of kr 

increases to ~180nm after 266 hours. The corresponding beam current was 290pA, approximately half 
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the original beam current generated after initial build-up. The application of a low-flash (1.460A for 

45 seconds) restored the probe current to ~750pA (for an equivalent emission current of 4μA) while 

the value of kr differed only slightly at ~190nm, indicating the successful removal of adsorbed gas but 

marginal change in emitter shape under low-flash conditions. 
 

      
           

Figure 3: (a) Plot of beam current as a function of A1 with (b) the corresponding energy spread in the 

primary beam as a function of build-up condition for a given beam current. 

 

           

      

 

Figure 4: Plot of drift in (a) Gun vacuum and (b) beam current after high-flash and BU-1 build-up. 

 

4. Summary 

We demonstrate that the post flash build-up parameters can strongly influence the resulting emission 

and beam characteristics. Hence, careful choice of these parameters is required to fully optimise 

instrument performance for specific applications. 
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