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Abstract.
Rubber composite materials have many applications, one example being tyre manufacture.

The presence of a filler material in the composite (such as carbon black or silica) causes
its mechanical properties to differ in several ways when compared to pure rubber such
as viscoelastic behaviour (the Payne effect), increased tensile strength and improved wear
resistance. To fully understand these properties, it is necessary to characterise how the filler
material is organised on the nanoscale. Using composite materials representative of those found
in tyres, this work illustrates the use of electron tomography and machine learning methods
as tools to describe the percolation behaviour of the filler; in this case, we focus on the largest
proportion of particles absorbed into one single object as a function of particle spacing.

1. Introduction
The change in the mechanical properties of a rubber-filler composite material with the
concentration of filler particles was first characterised by Payne in 1962 [1]. He demonstrated
that the bulk modulus increased with both the quantity of filler particles in the composite and
the effective surface area of the filler particles themselves. Filler particles will form a percolating
network when the quantity present in the material exceeds a certain threshold, as shown by a
sudden rise in electrical conductivity [2] at the threshold filler concentration. The mechanical
properties of a rubber composite show a dependency on the filler concentration [3, 4] with a
similar percolation transition - implying that there is a critical distance between filler particles
before an electrical or mechanical network can be formed.

The structural properties of rubber-filler composites are key issues in designing new
materials. As these composites are heterogeneous, bulk measurements of the volume fraction
alone are not sufficient and local, nanoscale information is necessary to fully understand these
materials and their properties. Electron tomography enables a complete 3D volume of a
nanoscale object to be reconstructed and can provide quantitative structural information from
this volume.

Previous work [2] has emphasised the percolation structure of filler particles by skeletonising
networks of particles. In contrast, this work is intended to determine what proportion of the
filler contributes to the percolation network by measuring the distribution of particle spacings.
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2. Experimental Methods
5 µm long, 100–150 nm diameter cylindrical pillars were fabricated from rubber composite
samples using an FEI Helios FIB/SEM dual-beam instrument and mounted on Omniprobe
TEM grids. Pillars were imaged in an FEI Tecnai F20 instrument at 200 kV under HAADF
STEM conditions (detector collection angle of 23.7–118 mrad) using a pixel size of 0.56 nm, a
dwell time of 11.7 µs and an image size of 1024x1024 pixels (field of view: 573x573 nm). A
tilt series was recorded using the FEI Xplore3D software from −76° to +76° with automatic
focus and manually-assisted tracking. Tilt series were aligned using cross-correlation and
reconstructed using 20 iterations of the SIRT algorithm [5] with the FEI Inspect3D software.

3. Data Processing and Results
Because the exact shape of each filler particle is intimately linked to the inter-particle spacings,
it is important that the reconstruction is not biased in any post-processing operation. Although
image filters such as anisotropic diffusion may improve the contrast and make it easier to
delineate the boundaries of filler particles, these operations may change the position of the
particle boundaries and introduce inaccuracies into any measurements made.

Unfortunately, SIRT reconstructions are not 3-level images. The voxel intensity values
for each component (vacuum, rubber, filler) overlap and so a simple thresholding algorithm
will not provide an accurate distinction between particle and matrix. Figure 1 illustrates the
effect of a 3-level Otsu thresholding operation carried out on one “Z-slice” of a tomographic
reconstruction, along with one example of mis-classification.

(a) (b)

Figure 1: The results of running
a 3-level Otsu thresholding algo-
rithm (b) on an unprocessed re-
construction (a). Inset regions
are 2x magnified - the raw data
is visibly more concave than the
Otsu-thresholded area. Pillar di-
ameter = 110 nm.

A more accurate option is to have a trained operator go over each image and manually
delineate parts of the image as belonging to a specific phase. While a human operator can
easily work around uneven particle intensities (such as in Figure 1), manual classification is
time-consuming, susceptible to operator bias and will not give identical results when repeatedly
applied to the same data due to human error.

Machine learning tools can be used to find a compromise between these two extremes. They
function by having the user mark portions of the unchanged source image as belonging to one
specific class or phase, just as in manual image classification. The software is then taught
to recognise those phases by analysing the marked regions on “feature” images which are
generated by running image filters (such as gradient operations and smoothing) on the source
image. Some form of decision algorithm is then used to identify the un-marked parts of the
image (and other images, if operating on an image stack) as belonging to one of the defined
classes and a map is created from this information. Any mis-classifications can be corrected
and the procedure repeated until the operator is satisfied with the result. Because the original
image is used as the reference for the human operator to compare and correct mistakes against
and because multiple filtered images are taken together to obtain a result, any applied filtering
operations should not alter the quantitative nature of the data.
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This method offers a combination of the potential accuracy of a trained human operator
with the repeatability of an automated routine (the classification data can be saved for later
use). Training the software, although much faster than manually marking out every particle in
a reconstruction image stack, can be time consuming. Classifier training on this reconstruction
took approximately 16 hours of operator time, including processing time for the software.

This work uses a machine learning package called Trainable Weka Segmentation,
implemented in the freely-available Fiji software [6]. It offers a choice from multiple decision
algorithms and feature image - we used the default random forest algorithm [7] with the
following features: Gaussian Blur and Difference of Gaussians (feature size detection); Sobel
filter, Laplacian filter, Derivatives, Gabor filter, Structure Tensor, Membrane Projections
and Hessian Matrix (edge detection); and Variance, Anisotropic Diffusion, Bilateral filter,
Kuwahara filter, Entropy and Neighbours (pixel intensity detection).

Since the entire feature stack is held in memory while training, using such a large number
of features requires a great deal of RAM. Therefore, training is carried out on a substack
consisting of every 15th image in the reconstruction, taken along the pillar axis. The pillar
reconstruction used in this work is 250x250x950 voxels in size and the training procedure on
a 1-in-15 substack consumed approximately 10 GB of RAM. Applying the final classifier to
the full reconstruction took approximately 6 hours of processing time on an Intel Core i7-2600
CPU and used substantially less RAM, since each image slice is calculated separately.

Figure 2 shows the results of a trained classifier on the same data as in figure 1. The classified
image appears to match the raw data much more accurately than with global thresholding.
Since the source image has remained unchanged, there is no ambiguity as to whether any
filtering process has altered the data and so the results can be considered accurate enough for
pixel-level quantification.

(a) (b)

Figure 2: The same reconstruc-
tion as in Figure 1, but processed
with the Trainable Weka Seg-
mentation software. Inset region
is the same as in Figure 1. Pillar
diameter = 110 nm.

The classified data is then segmented and percolated. Percolation is quantified by the closest
approach distance between two particles and the degree of percolation by how many of them
are included within one network for any given “added radius” or particle spacing.

Numerical values for percolation are obtained using a custom C++ program. The classified
volume is segmented into discrete objects, which are then dilated by one voxel and segmented
again. If two or more particles merge, the new one is given a list of which original particles it
contains. This process repeats until there is only a single object remaining. The final data is
presented as the largest fraction of the original particles assimilated into any one single object
(the percolation fraction) against the particle separation (2 x number of dilate steps x voxel
size). Figure 3 is the result of running this procedure on the machine learning-classified volume.

From this, we can see that 25% of the particles percolate at a spacing of 1.3 nm, 50% of
the particles percolate at 4.8 nm and 75% of the particles percolate at 16.1 nm. Because these
spacings are very close to the voxel size (0.56 nm), it is easy to recognise the importance of
accurately classifying the reconstruction.
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Figure 3: Percolation data from
the reconstruction in Figure 2.
The volume contained 19 sepa-
rate particles.

4. Conclusions
We have demonstrated that machine learning methods offer a reliable means of identifying
regions of a tomographic reconstruction without using filters to alter the source data or by
using time-consuming and potentially inaccurate manual segmentation. Data processed in
this manner retains fine details on the order of one or two voxels, meaning that quantitative
information can usefully be obtained on particle spacings even when particles approach one
another very closely. The next step would be to combine this information with mechanical
testing in order to relate the detailed mechanical properties of these rubber composites to the
distribution of particle spacings (as opposed to the bulk volume fraction used in current work).
Understanding this relationship will allow rubber composite manufacturers to actively design
their filler particles in order to more accurately specify and create new materials.
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