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Abstract. A still open issue related with the study of assemblies of magnetic nanoparticles,
deposited on a substrate or embedded in a matrix, is that of the interplay between intrinsic
features of the nanoparticles pertaining to their finite-size and boundary effects, and the
collective effects entailed by their mutual interactions and their interactions with the hosting
matrix or substrate. In this work we develop a semi-analytical approach that allows us to
derive expressions for the magnetization and the susceptibility of interacting assemblies of
single-domain ferromagnetic nanoparticles. We find that upon tuning the physical parameters
pertaining to each nanoparticle or the shape of the assembly and its spatial arrangement, surface
and inter-particle interactions may be set up to play additive or comptetive roles leading to
assemblies with optimal magnetic properties.

1. Introduction
Over the last two decades, the development of practical applications for magnetic nanoparticle
assemblies has raised several fundamental questions such as how to take account of the role
of surface effects in the magnetic properties of an individual nanoparticle? What is the role of
inter-particle interactions in nanoparticle assemblies? If these two questions have been separatly
answered many years ago, for instance both at the numerical or analytical levels concerning
the surface effects [1, 2, 3] or the dipole-dipole interactions (DDI) [4, 5, 6, 7, 8], only recent
investigations on static magnetic properties take a systematic approach where intrinsic and
collective terms contributing to the energy are taken explicitly into account [9, 10]. Tackling
the problem of the interplay between surface effects and DDI can in principle be performed
in different ways, yet as a mutli-spin formulation for the individual particles is tractable only
numerically, the present work relies on an effective description of macrospins where the surface
effect induces a cubic anisotropy as it has been shown in Ref.[2]. Furthermore, we restrict our
study to the case of monodisperse weakly interacting assemblies where the uniaxial anisotropies
are aligned with the external field. These simplifications enable us to derive semi-analytical
expressions in which the parameters controlling the surface anisotropy and the DDI clearly
appear. The paper is organized as follows: In the first section we present our model and
briefly present the calculations leading to the final expressions of the magnetization and the AC
susceptibility, a second section is devoted to the presentation of our results. The paper ends
with our concluding remarks.
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2. Model: energy, magnetization and susceptibility
We consider an assembly of N ferromagnetic nanoparticles each carrying a magnetic moment
mi = misi, i = 1, · · · ,N of magnitude m and direction si, with |si| = 1. The nanoparticles are
distributed on a simple cubic lattice of parameter a. Each magnetic moment has a uniaxial easy
axis e aligned in the same z direction. The energy of a magnetic moment mi interacting with
the whole assembly, in a magnetic field µ0H = Hez (so that H is measured in Tesla), reads
(after multiplying by −β = −1/kBT )

Ei = E(0)
i + EDDI

i , where E(0)
i = xsi · ez + σ

[
(si · ez)2 − ζ

2

(
s4
i,x + s4

i,y + s4
i,z

)]
(1)

is the energy of the free nanoparticle at site i with the first term being the Zeeman energy. The
second term is the anisotropy energy comprising contributions from the core and the surface,
such that the model is an effective one spin problem (EOSP) with the assumption that |ζ| < 1.
This formulation with both a uniaxial and a cubic effective anisotropies has been shown to model
the effect of surface anisotropy on the global magnetization of a nanoparticle [2]. Next, EDDI

i is
the DDI energy defined by EDDI

i = ξ
∑

j<i [3(si · eij)(eij · sj)− si · sj ] /r3
ij where rij = ri − rj ,

eij = rij/rij . We make here the assumption that the dipole-dipole approximation is valid
for the considered samples, i.e. spherical nanoparticles with a reasonable interparticle distance
such that the inner structure of the particles can be neglected. We have introduced the following
dimensionless parameters

x ≡ mH

kBT
, σ ≡ K2V

kBT
, ζ ≡ K4

K2
, ξ =

(µ0

4π

)(m2/a3

kBT

)
,

together with the DDI coefficient ξ̃ ≡ ξC(0,0), where C(0,0) is a lattice sum and for a cubic
sample C(0,0) = −4π

(
Dz − 1

3

)
, Dz being the demagnetizing factor along z [11]. To make

contact with experiments, the applied field H can be estimated: at T = 5K for x = 5 in
the case of a 3nm cobalt nanoparticle (i.e. m ≈ 2167µB) one finds H ≈ 17mT. In this case,
the present approach remains valid in the limit of weak DDI, a critical value of the volume

concentration can be estimated Cvc = π2kBT
µ0m2

D3
√

2R ,1 which corresponds to a critical interparticle

distance ac ≈ 4D = 12 nm.
With the definition of the energy given above and assuming that the considered assemblies

are diluted (ξ̃ � 1), the dipolar term EDDI
i in Eq. (1) is considered as a perturbation to

the free particle energy E(0)
i . An expansion in x can be performed for low fields within this

EOSP formulation in the presence of weak DDI. After some algebra the magnetization can be
computed, with the corrections linear in ξ̃ stemming from the interactions, and can be expressed

as m
(
x, σ, ζ, ξ̃

)
' χeq

(
x, σ, ζ, ξ̃

)
x, where χeq

(
x, σ, ζ, ξ̃

)
' χeq

free + ξ̃χeq
int, with χeq

free being the

equilibrium (linear) susceptibility of the noninteracting assembly in the limit of high anisotropy
energy barrier [10, 11]

χeq
free (x, σ, ζ) = 2χ⊥

0 σ
[
χ

(1)
free + 3χ

(3)
freex

2
]
, (2)

χ
(1)
free =

(
1− 1

σ

)
+
ζ

σ

(
−1 +

2

σ

)
, χ

(3)
free =

1

3

[(
−1 +

2

σ

)
+
ζ

σ

(
2− 5

σ

)]
.

Here χ⊥
0 is the transverse equilibrium susceptibility per spin at zero temperature in the absence

1 R being a lattice sum introduced in Ref. [11]
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of a bias field χ⊥
0 ≡

(
µ0m2

2K2V

)
. The interaction contribution to the susceptibility reads [10]

χeq
int (x, σ, ζ) = 2χ⊥

0 σ
[
χ

(1)
int + 3χ

(3)
intx

2
]
, (3)

χ
(1)
int = 1− 1

σ
− 2

(
1− 3

σ

)
ζ

σ
, χ

(3)
int = −4

3

[(
1− 3

σ

)
− 3ζ

σ

]
.

The dynamical properties of a nanoparticle assembly can be studied, for instance, thanks to the
AC susceptibility. In the high-energy barrier limit and for low frequencies, assuming a single
dynamical mode characterized by a relaxation rate Γ, the AC susceptibility can be derived within
the Debye formalism χ(ω) =

χeq

1+iωΓ−1 . It has been shown [12, 13] that the over barrier relaxation
rate of a weakly interacting assembly can be expressed in terms of the relaxation rate of a free
particle Γ0 and the longitudinal and transverse components of the dipolar field (Ξ‖ and Ξ⊥), i.e.

Γ ' Γ0

[
1 +

1

2

〈
Ξ2
‖

〉
0

+
1

4
F (α)

〈
Ξ2
⊥
〉

0

]
. The dynamics within the potential well is taken care of

with the help of the function F (α) which depends on the damping parameter α. In the limit
of intermediate to high damping, Γ0 can be derived within Langer’s formalism [14]: care has
to be taken while deriving the expression of Γ0 in the EOSP model, as the energy landscape is
modified by the presence of a cubic anisotropy controlled by the parameter ζ.

3. Magnetization curves
Our results are summarized in Fig. 1 where we give two examples of magnetization curves for
two assemblies of N = 2000 particles with different shapes: oblate (20 × 20 × 5) and prolate
(10× 10× 20). More results can be found in Ref. [10]. In order to see the effect of the DDI we
have chosen samples with different volume concentrations Cv ∝ ξ: either Cv ∼ 0 or Cv = 0.08%.
We choose here to keep the intrinsic parameter ζ (reflecting the surface effect) positive. In this
case, the easy axes of the cubic anistropy term in Eq. (1) lie along the main diagonals of the cube,
which means that the surface effect tends to reduce the magnetization. This intrinsic effect is
clearly seen in both plots if one compares the black (non-interacting assemblies without surface
effect) and red curves (non-interacting assemblies with ζ = 0.25). In contrast, the role of DDI
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Figure 1. Magnetization as a function of the field x for monodisperse assemblies of particles
with diameter D = 3 nm at T = 5K for an oblate (20×20×5) with C(0,0) ≈ −4.086, or a prolate
(10× 10× 20) sample with C(0,0) ≈ 1.73. The volume concentration Cv = 0.08% corresponds to
an interparticle distance a ≈ 8.68D.
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strongly depends on the sample’s shape: whilst the DDI effective field induces an easy xy plane
for the oblate sample, it facilitates magnetization along the z axis for the prolate sample. This
results in a reduction of the magnetization in one case, green curve for the oblate sample, and an
enhancement of the magnetization for the prolate one. Hence, for a concentration Cv = 0.08%
at finite parameter ζ = 0.25 controlling the surface effects, we see that the collective (DDI) and
intrinsic effects can either be additive (oblate) or can mutually screen each other (prolate). This
is directly in line with the low field expression of the magnetization obtained in the previous
section. Indeed, the expression of the magnetization depends on the product ζξ̃. In the present
case, the sign of ξ̃ changes because the lattice sum C(0,0) goes from negative to positive values
as the sample’s shape changes from oblate to prolate.

4. Concluding remarks
The EOSP approach adopted here in order to investigate the interplay between surface and DDI
effects in ferromagnetic nanoparticles assemblies enabled us to derive semi-analytical expressions
for the magnetization. We presented the low-field expansion of the latter which is directly
related to the equilibrium susceptibility. We clearly see that the magnetic properties of the
whole assembly can be tuned by the product ζξC(0,0) where ζ controls the effects related to
the surface and C(0,0) depends on the sample’s shape as we have seen in the specific example
highlighted here. Furthermore, by modifying the intrinsic physical parameters related with the
size, shape and underlying crystallographic structure the sign and amplitude of ζ are modified.
Hence, it is relatively straightforward within this approach to infer whether DDI and surface
effects are in competition or not. In addition, as we have suggested, the present work sets the
stage for further investigations of the dynamical properties [14].
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