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Abstract. A new principle is introduced for X-ray intensity calculation dynamically scattered
in single crystals with defects. The principle is based on Bragg diffraction dynamic theory for X-
rays in ideal single crystals and small angle scattering theory. The principle is substantiated by
juxtaposition of the corresponding formula with the particular solution of the integral-differential
equation for a dynamically scattered X-ray wave in a weakly distorted single crystal.

1. Introduction

The further development of the dynamic theory for X-ray scattering in deformed crystals and
crystals with defects is most important for the structural study of solid materials from the aspect
of X-ray scattering phase problem solution. This leads to an unambiguous interpretation and
decoding of X-ray diffraction and interference images on the purpose of precise determination
of the structural distortions of the studied materials. This theory is quite developed and the
integral-differential equation of the studied direct problem is obtained [1]. Nevertheless the
integration of this equation is an uneasy task and the reverse problem formulation and solution
for the determination of precise structures of materials with these equations is an unsolved
problem. The direct problem solution, the calculation of complex amplitude of X-ray wave
dynamically scattered in a distorted crystal for given analytic distortions is a difficult problem.
Usually the problem is not solved analytically.

The numerical integration of the obtained equations strongly restricts the capabilities of
developed strict dynamic theory of X-ray scattering in distorted crystals, in respect of new
predictions, for experiment development in this spear. The uncertainty of the theoretical
interpretation of experimental results, to some extent, is simplified when the crystal is
distorted by definite external influences (a thermal gradient, ultrasound field). Therefore
the further development of X-ray diffraction theory and experiment from the point of mutual
supplementation, of course, is connected to the study of crystal distorted by definite external
analytical influences [2, 3]. For the purpose of overcoming of above mentioned problems, in
work [4] we suggest a new principle of calculation of X-ray intensities (or thermal neutrons)
dynamically scattered in crystals with defects. This principle ensues from the juxtaposition of
the dynamic theory of X-ray Bragg diffraction with the theory of their small angle scattering.
The fairness of the new principle is substantiated by the juxtaposing of the corresponding formula
with the particular solution of the integral-differential equation for a dynamically scattered X-
wave in a weakly distorted crystal. .
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2. The Essence of the New Principle

Let’s assume that a beam of X-ray falls at the Bragg angle on a single crystal with a defect
(figure 1). We will consider the amplitude of the diffracted wave as a result of double-phase
diffraction.

In the first phase a beam of X-ray dynamically scatters on an perfect single crystal (Bragg
diffraction). In the second phase the waves diffracted in the first phase undergo a small angle
scattering on a defect. In the first phase the dynamic Bragg diffraction of an X-ray beam takes
place on an perfect single crystal, for what the amplitudes of the diffracted waves are known. In
the second phase the waves diffracted in the first phase undergo Fraunhofer or Fresnel diffraction
on a defect depending upon the defect size and the parameters of intensity registration geometry
of the diffracted radiation. The essence of the new principle is that the amplitude of the X-wave
diffracted in a crystal with a defect can be calculated by adding the scattered amplitudes of the
two phases.

Let’s assume that a monochromatic X-ray beam with amplitude \Ilg) (r) falls at the Bragg
angle on a non absorbing single crystal with a static defect (figure 1). According to the new
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Figure 1. The scheme of the incidence of a ribbon-like beam on the crystal

principle the amplitudes of waves Wq(r) and ¥y (r) in the first approximation, can be represented
in the form,;

exp(ik [r — r'|)

Won(r) = ¥ () £ o [ W9, U)dr (1)
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where \Ilg7h(r) — correspondingly, the amplitudes of the waves dynamically diffracted on a perfect
crystal v— the parameter characterizing the strength of interaction of wave \Ilg7h(r) - with the
defect, U(r’) the local replacement of the atoms from their equilibrium position in the perfect
crystal, bfr the radius-vector of the observation point, the integration is made within the volume
of the defect distribution.

The plus and minus signs difference follows form the energy conservation law as the observed
strengthening of wave Wy, (r) scattered on a defect occurs at the expense of weakened wave Wo(r)

Expression (1) submits the solution of the volume problem. From the analysis of this solution
it is possible, particularly, to predict the phenomenon of X-beam pumping form the passage
direction to the reflection direction, the phenomenon of the beam focusing, diffraction on a
defect in a crystal. In some cases, it is possible to set the reverse problem of determination of
the local shift function U(r') of atoms form their equilibrium position in the prefect crystal, etc.

Particularly, let’s consider the phenomenon of modulation of X-rays multiple times scattered
on a perfect crystal of quartz where an acoustic standing wave exists. According to the
experiment scheme [5] (figure 2) a ribbon-like monochromatic beam of X-ray falls on a single
crystal of quartz at the exact Bragg angle when an acoustic standing wave exists along the
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Figure 2. The scheme of the beam diffraction on the crystal in the presence of standing acoustic
wave

crystal width. Under the conditions of the submitted experiment it is possible to admit that
U = Up cos(2mkg.z), where ky.) — the wave number of the acoustic wave.
Expression (1) is brought to the form;
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where \118’ 5 - the plane wave solution for the perfect crystal, d the width of the single crystal.
Taking into account the numerical values of the parameters of geometry and radiation of the
experiment, the integral in expression (2) is brought to a Fresnel integral, which real part, with
the precision of the constant factor has the form:
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where g — the precise Bragg angle, Az — the distance of the viewed point on the photo plate
from its center; k — the wave number of X-wave inside the crystal. The results of the numerical
integration are submitted on figure 3.

From the numerical integration (9) follows that in the geometrical cross sections of both the
passing and reflected beams occur certain amplitude oscillations, what precisely characterize the
experimental results [5].

Expression (1) presents the general expression for the amplitudes of neutrons and X-ray beams
multiple times scattered on single crystals with defects of various forms. From this expression
analysis, it is possible to predict and quantitatively evaluate different known and new dynamic
phenomena while the diffraction of these beams.

Let’s reveal the physical essence of parameter v, characterizing the interaction power of the
radiation with the defect. For this purpose, let’s consider the problem of the dynamic scattering

of a plane X-ray wave ¥y(r) = \Ilf)(r) exp(—i 61’) in weakly deformed crystal with electric
polarization x(r). The fundamental equation of this scattering has the following form:
(A2 + k2)® = -V x V x (xP) (4)

where ¥(r) — the vector of electric induction of the wave scattered in the crystal, kg = 27” - the
wave number of the X-wave.

Differential equation (4) is equivalent to the following integral equation [1]:
(—ik |r — ')

'
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Figure 3. The results of numerical integration for the first (a), third (b), fifth (c) and seventh
(d) harmonicas

We search the solution of equation (5) by applying the method of sequential approximation. In
the first approximation of the solution, in the integrand expression, we put, instead ¥(r’), the
amplitude ¥(r’) of the wave scattered in the perfect crystal. In weakly deformed crystal, the
electric polarization x(r) can be presented in the form:

X(r') = xo(r' = Ux")) (6)

where xo(r’) — the electric polarization of non-deformed crystal. According to Lagrange’s
formula, it is possible to write as:

Xo(r' = U(r') = xo(r') = VxoU(r). (7)
Taking into account expressions (4-7), the solution of equation (5) can be presented in the form:

W(r) = BO(r) — — / ar &2k T =)o) i (VxoU(r)TO(r)). (8)
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As onilj(r/) << 1 so for the double-wave approximation of scattering, from the corresponding

to x equation (4), we’ll obtain:
_ VxoU()

V % V x (VxoU(E)¥0(r')) o

2k20O0(r/). (9)

By inserting expression (9) into (8), we’ll obtain the final solution of the formulated problem.
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From the juxtaposition of solution (10) and expression (1), the physical essence of parameter
v is reveal, which characterize the interaction strength between a wave and a defect:

2kj
v ="2|Vxo|cos (11)
X0

where 6 - the angle between the bftors Vo and U(r’).

Taking into account the obtained expression for parameter (11), according to the new
principle, the amplitude of the wave diffracted on a defect in a single crystal can be calculated
with the formula:

2k2 exp(ikg |r — r')
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Particularly, in the far region of the diffraction of a plane monochromatic wave on a defect
(Fraunhofer diffraction), the second member presents the Furrier-image of the distribution of the
local displacement of the atoms U(r’). Consequently, if the amplitude o (r) of the diffracted
on a defect wave is known, then it possible to solve the reverse problem of the determination of
the field U(r’) by calculating of the reverse Furrier-image of the amplitude Wo (r).

3. Conclusion

In the end it is possible, particularly, to study the phenomenon of the pumping of X-rays into
the reflection direction and to predict new phenomena, it is possible to study the focusing of
X-ray beams diffracted on defects in crystals. In some cases it possible to formulate the reverse
problem of the determination of the function of local replacement of atoms U(r’) from their
equilibrium location in the perfect crystal, etc.
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