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Abstract. Energy levels of classically chaotic system demonstrate mutual repulsion described
by Wigner distribution of distances between neighboring levels. The statistical properties of
energy levels for the axially channeling electron in the system of [110] atomic strings of a
silicon crystal are studied in the present report. The inter-level spacing distributions obtained
by numerical calculation demonstrate satisfactory agreement with a theoretical predictions for
chaotic systems.

1. Introduction
Quantum chaos means the study of semiclassical behavior of systems whose classical motion
exhibits chaos [1]. The most prominent characteristic of that behavior is the statistics of energy
levels. It was demonstrated in many cases [2] that the spacing s between adjacent (neighboring)
levels satisfies Wigner distribution

p(s) = (πs/2D2) exp(−πs2/4D2) (1)

(where D is the mean level spacing) for chaotic systems, while exponential (sometimes called as
Poisson) distribution

p(s) = (1/D) exp(−s/D) (2)

for regular ones. The last case manifests itself as a tendency to group the levels into shells.
The hypothesis of universality of the distribution (1) for classically chaotic systems is tested

in the present article for the case of axial channeling of fast electrons in crystals.

2. Transverse energy levels of axially channeling particles
When an electron is incident to the atomic string of the crystal under small angle ψ, it can be
captured by the attractive potential of the string. The finite motion in such potential is called
the axial channeling (see, e.g., [3, 4, 5]). This motion could be (with good accuracy) described as
a motion in the uniform string potential U(x, y) (i.e. the potential of the atomic string averaged
along its axis z). The longitudinal (i.e. parallel to the string axis) component of the particle
momentum p∥ is conserved in such field. The motion in the transverse plane will be described
in this case by the two-dimensional Schrödinger equation [3]

ĤΨ(x, y, t) = i~
∂

∂t
Ψ(x, y, t) (3)
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Figure 1. Electron potential
energy (6) in the field of two
neighboring atomic strings [110]
of a silicon crystal.

with the Hamiltonian

Ĥ = − ~2

2E∥/c2

(
∂2

∂x2
+

∂2

∂y2

)
+ U(x, y) , (4)

in which the value E∥/c
2 (where E∥ =

√
m2c4 + p2∥c

2) plays the role of the particle mass.

The finite motion in the (x, y) plane would be characterized by the discrete set of the
Hamiltonian (4) eigenvalues E⊥. Such quantization of the transverse motion energy had been
observed in many experiments for moderately fast electrons (E∥ ∼ 1 MeV), when the total
number of transverse energy levels is small (see, e.g., [4] and references therein).

The uniform string potential could be approximated by the formula [3]

U1(x, y) = −U0 ln

(
1 +

βR2

x2 + y2 + αR2

)
, (5)

where for the [110] string of silicon U0 = 60 eV, α = 0.37, β = 3.5, R = 0.194 Å (Thomas-Fermi
radius); the least distance between two parallel strings a/4 = 5.431/4 Å (where a is the lattice
period). So, the uniform potential, in which the electron transverse motion takes place, will be
described by two-well function (Figure 1)

U(x, y) = U1(x, y + a/8) + U1(x, y − a/8) (6)

(neglecting the influence of far-away strings). The electron finite motion in such potential
(corresponding to negative values of the transverse motion energy E⊥) is known as axial
channeling [3].

The potential (6) is suitable for quantum chaos investigations because the motion in such
potential is classically chaotic if the transverse energy exceeds the saddle point of the potential
well [5]. However, Schrödinger equation with such complicated potential as Eq. (6) requires
numerical methods for its solution. In the present article we have found the transverse energy
levels for axially channeling electrons in two-string potential (6) using the so-called spectral
method [6], first applied to the channeling in [7, 8].
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In brief, the method is based on the numerical simulation of the time evolution of initial
wave function according to Schrödinger equation (3). The correlation function between wave
functions at the initial and current time momenta, Ψ(x, y, 0) and Ψ(x, y, t),

P (t) =

∫ ∞

−∞

∫ ∞

−∞
Ψ∗(x, y, 0)Ψ(x, y, t) dxdy, (7)

contains information about the energy eigenvalues. Indeed, every solution of the time-dependent
Schrödinger equation (3) could be expressed as the superposition

Ψ(x, y, t) =
∑
n,j

An,jun,j(x, y) exp(−iEnt/~) (8)

of the Hamiltonian eigenfunctions un,j(x, y),

Ĥun,j(x, y) = Enun,j(x, y),

where the index j is used to distinguish the degenerate states corresponding to the energy En.
Computation of the correlation function (7) for the wave function of the form (8) gives

P (t) =
∑

n,n′,j,j′

exp(−iEn′t/~)A∗
n,jAn′,j′

∫ ∞

−∞

∫ ∞

−∞
u∗n,j(x, y)un′,j′(x, y)dxdy =

=
∑

n,n′,j,j′

exp(−iEn′t/~)A∗
n,jAn′,j′δnn′δjj′ =

∑
n,j

|An,j |2 exp(−iEnt/~). (9)

Fourier transformation of (9) leads to the expression

PE =

∫ ∞

−∞
P (t) exp(iEt/~) dt = 2π~

∑
n,j

|An,j |2 δ(E − En). (10)

We see that the Fourier transformation of the correlation function looks like a series of δ-form
peaks, positions of which indicate the energy eigenvalues.

However, integration of the numerically obtained correlation function P (t) with the exponent
in (10) could be carried out only over the finite time interval:

PE =

∫ T

0
P (t) exp(iEt/~) dt = T

∑
n,j

|An,j |2 exp(i(E − En)T/2~) sinc((E − En)T/2~), (11)

where sinc(x) = sin(x)/x. As a result, we obtain a series of peaks of finite width (inverse
proportional to T ) with sidelobes instead of infinitely narrow δ-like peaks (10). Employing
normalized Hanning window function

w(t) = (1/T )(1− cos(2πt/T )) (12)

in the integrand (11),

PE =

∫ T

0
w(t)P (t) exp(iEt/~) dt, (13)

substantially suppresses these sidelobes [6]. Typical correlation function shape in this case is
presented in Figure 2.
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Figure 2. Correlation func-
tion (13) for electron of energy
E∥ = 400 MeV with initial
wave function (15) in the po-
tential well (6) indicates two
eigenvalues in the presented
interval of transverse motion
energy E⊥.

Let two neighboring eigenvalues of E⊥ are well-resolved in our numerical computation if not
less than four side maxima are situated between two main ones. This leads to the criterion

T = 16π~/∆E⊥ (14)

for the total evolution time T necessary for the desirable energy levels resolution ∆E⊥.
The resolution achieved in our computations is not worse than ∆E⊥ = 0.004 eV. Further
computational details are described in our previous papers [9, 10].

Note that the statistics of energy levels have to be studied separately for every type of
eigenstate symmetry of the quantum system [2]. The potential well (6) has two planes of mirror
symmetry: x = 0 and y = 0. So, every eigenstate of the electron in the potential (6) belongs to
one of four classes of symmetry:

Ψ++(−x, y) = Ψ++(x, y), Ψ++(x,−y) = Ψ++(x, y), (15)

Ψ+−(−x, y) = Ψ+−(x, y), Ψ+−(x,−y) = −Ψ+−(x, y), (16)

Ψ−+(−x, y) = −Ψ−+(x, y), Ψ−+(x,−y) = Ψ−+(x, y), (17)

Ψ−−(−x, y) = −Ψ−−(x, y), Ψ−−(x,−y) = −Ψ−−(x, y). (18)

The level spacing distributions obtained for the semiclassical domain (close to the top of the
potential well) demonstrate quite good agreement with the prediction (1) for every of these four
symmetry classes. The distributions computed for the transverse energy domain

−10 eV ≤ E⊥ ≤ −2.6 eV (19)

are presented in Figure 3. Small discrepancy could be caused by the limited statistics (the
arrays of ∼ 250 energy levels have been analyzed whereas the typical ones in [2] contain some
thousands of levels).

Another possible reason of the mentioned discrepancy is a specific shape of the potential (6):
rapid narrowing of the potential well with the depth increase leads to as much rapid increase of
the average inter-level distance. Indeed, in the lower half of the energy interval (19)

−10 eV ≤ E⊥ ≤ −6.3 eV (20)

the average inter-level distance D is about twice larger than in the upper one

−6.3 eV ≤ E⊥ ≤ −2.6 eV. (21)

As a result, we can see better agreement of the distributions calculated for the intervals (21)
and (20) with Wigner function (1) (Figures 4 and 5) than for the total interval (19).
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Figure 3. Transverse energy levels spacing distribution in the range (19) for E∥ = 400 MeV
electrons channeled in the field of two parallel [110] strings of silicon crystal (histograms) as well
as theoretical predictions (1) for chaotic motion (solid line) and (2) for regular motion (dashed
line). The histograms are plotted for odd eigenstates (16), (17) (panels (a) and (b), respectively)
and for even eigenstates (15), (18) (panels (c) and (d), respectively).
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Figure 4. The same as in Figure 3 for the transverse energy domain (20).
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Figure 5. The same as in Figure 3 for the transverse energy domain (21).

3. Conclusion
Wigner distribution (1) of distances between adjacent energy levels of quantum system is the
pronounced manifestation of quantum chaos phenomenon. Building of the inter-level distances
distribution requires computational methods which allow one to find densely lying eigen-energies
in the potential wells with sophisticated configuration. This problem naturally arises under
consideration of the axial channeling in the silicon crystal near [110] axis of electrons with
energy of some hundreds of MeV and higher. As we demonstrate in the present paper, the
spectral method is sufficient and effective for this problem.

The obtained results demonstrate a different degree of agreement between the Wigner
distribution and the calculated inter-level distance ones for the different transverse energy ranges.
This fact could have some causes like the difference of average inter-level distance for these ranges
and presence of regular (in the classic limit) motion domains among the chaotic motion. Anyway,
this problem requires further more detailed investigations.
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