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Abstract. Differences between classically calculated radiation spectra of coherent radiation
sources and their calorimetrically measured counterparts are discussed in a nutshell. Properties
of photon multiplicity spectra are highlighted. The high-intensity limit is analyzed. A simple
model for quick estimates of multiphoton effects in coherent radiation spectra is given.

1. Introduction
Ultra-relativistic character of radiation from high-energy electrons usually limits its experimental
observation to angle-integral spectra, which are furthermore measured by electromagnetic
calorimetry. But for intense gamma-radiation sources (e.g., coherent sources based on electron
transmission through periodic structures), such spectra can significantly differ from classically
evaluated ones (cf. Fig. 1), because an electron has a significant chance of emitting more
than one photon, and only their total energy is measured by a calorimeter. Hence the need
for establishing correspondence between single-photon spectra (photon number density) and
multiphoton spectra (radiative energy loss probability distributions).

A detailed theory for multiphoton effects in coherent radiation spectra was offered in [1].
Here we present an outline of its results, along with some complementary remarks. In addition,
we describe a crude model suitable for quickly obtaining expectations about coherent radiation
spectrum shapes at a given intensity.

2. Generalities
If dI

dω1
is a classically evaluated radiation energy spectrum, the rescaled distribution dw1

dω1
= 1

ω1

dI
dω1

can give the corresponding photon probability density only provided the integral

w1 =

∫ ∞

0
dω1

dw1

dω1
(1)

(the mean photon multiplicity) is small. Otherwise, dw1
dω1

can be used as a kernel for kinetic
evolution of the distribution function for the radiating electrons,

∂

∂L
Π(Ee − ω) =

∫ E

0
dω1

∂

∂L

dw1

dω1
[Π(Ee − ω − ω1)−Π(Ee − ω)] , Π(Ee − ω)

∣∣
L=0

= δ(ω).

(2)
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Figure 1. (a) Planar channeling radiation of 5 GeV positrons in (110) oriented Si crystal
[2]. There is a difference between spectra (enhancement over the equivalent amorphous target)
for crystal thickness L = 0.1 mm and L = 0.5 mm. (b) Coherent bremsstrahlung of 150
GeV electrons in a 0.6 mm thick (110) Si crystal. [3]. There is a difference between the
calorimetrically measured (points) and the classically calculated radiation spectra (curves) [3].
(c) Photon multiplicities at coherent bremsstrahlung and planar channeling of 150 GeV electrons
in 1.5 mm thick diamond crystal [4]. They exhibit a linear rise with ω, followed by a turnover.

or of the multiphoton spectrum,

∂

∂L

dw

dω
=

∫ ∞

0
dω1

(
dw

dω′

∣∣∣∣
ω′=ω−ω1

− dw

dω

)
∂

∂L

dw1

dω1
+W0(L)

∂

∂L

dw1

dω
,

dw

dω

∣∣
L=0

≡ 0 (3)

(inhomogeneous, but with a uniform initial condition). Quantities dw
dω and Π are related via

Π(Ee − ω) =
dw

dω
+W0δ(ω),

∫ Ee

0
dωΠ(Ee − ω) = 1,

where W0 = 1−
∫∞
0 dω dw

dω = e−w1 is the photon non-emission probability.
The solution to the kinetic equation may be expressed as a contour integral in the complex

s plane [1, 5]:
dw

dω
=

1

2πi

∫ c+i∞

c−i∞
dsesω

[
e
∫∞
0 dω1

dw1
dω1

(e−sω1−1) −W0

]
(4)

not involving probabilities differential in the traversed length L. The integral for Π(Ee − ω) is
the same but without the W0 term in the brackets. Another derivation of the contour integral
representation for the resummed spectrum, not resorting to the notion of evolution with L, is
based on the Poisson character of the soft photon emission process [6, 1].

Function Π(Ee − ω) has a δ-singularity at ω = 0, whereas dw/dω is regular everywhere.
However, if integral (1) diverges on the lower limit, W0 vanishes, and then dw/dω = Π(Ee −ω).
That is the case for ionization losses, for which resummation of the type (4) was historically first
carried out [5], but not always so for radiative energy losses [1].

Tips for numerical evaluation of the contour integral. At large |Ims|, the integrand of (4)
is oscillatory due to factor esω, with the oscillation amplitude decreasing insufficiently rapidly
for direct numerical computation. To improve the convergence and facilitate the numerical
evaluation, one may combine esω with the differential, whereafter integrate by parts:

dw

dω
=

1

2πiω

∫ c+i∞

c−i∞
dse

sω+
∫∞
0 dω1

dw1
dω1

(e−sω1−1)
∫ ∞

0
dω1ω1

dw1

dω1
e−sω1 . (5)
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If dw1
dω1

∼
ω1→0

a
ω1

+b, at large s we have
∫∞
0 dω1ω1

dw1
dω1

e−sω1 ∼
s→∞

a
s +

b
s2
,
∫∞
0 dω1

dw1
dω1

(e−sω1 −1) ∼
s→∞

−a ln sE + b
s − const, hence the integrand of (5) at |Ims| → ∞ decreases as s−1−a. Such a rate

of decrease may be sufficient, but still the integration must be carried out over a wide interval of
s, and with a high working numerical precision, in order to account for significant cancellations
with an oscillatory integrand. At small s,

∫∞
0 dω1ω1

dw1
dω1

e−sω1 ∼
s→0

a
s (1− e−sE), which has a cusp

at s . E−1. Therefore, in case of non-zero a, it may be sensible to choose constant c > 0.

The role of averaging. The statistical independence of photon emissions holds only for a
completely prescribed classical electromagnetic current. Therefore, any averaging procedures
are to be performed after the resummation.

The integration over photon emission angles, though, may as well be performed before the
resummation: if we do that after resummation, for angles of all the photons, we regain a
resummation formula involving only the angle-integral single-photon spectrum.
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Figure 2. Red solid curve, single-photon spec-
trum of ‘one-point’ coherent bremsstrahlung,
described by Eqs. (6-8), with parameters E =
10ω0, a = 0.1, bω0 = 3

2w1c = 2 (moderate
intensity). Green solid curve, the correspond-
ing multiphoton spectrum. The second max-
imum originates entirely from multiphoton ef-
fects. Black dashed curve, low-ω asymptotics,
ω dw

dω ≃ e−w1c
(
ω
E

)a
(a + bω). Black dot-dashed

curve, high-ω asymptotics, ω dw
dω ≃ a

(
ω
E

)a
.

3. Manifestation of multiphoton effects
In this section we will illustrate manifestation of multiphoton effects by a simple physical
example. Adopt a ‘one-point’ dipole single-photon spectrum for the coherent radiation
component:

dw1c

dω1
= bP

(
ω1

ω0

)
θ(ω0 − ω1), P (z) = 1− 2z + 2z2, (6)

with θ(z) the Heaviside unit step function, whereas the incoherent component is given by1

dw1i

dω1
=

a

ω1
θ(E − ω1), (7)

and neglecting the interference, let

dw1

dω1
=

dw1c

dω1
+

dw1i

dω1
. (8)

An exemplary graph of the multiphoton spectrum corresponding to the single-photon
spectrum (6) is shown in Fig. 2. We can see that multiphoton effects cause general lowering
of the coherent radiation peak (like in Figs. 1a,b). Besides that, multiphoton effects alone can
give rise to a second spectral maximum at ω ≈ 2ω0, and cause suppression at low ω, below the
Bethe-Heitler value. A more detailed analysis is given in [1].

1 Here the effective ultraviolet cutoff parameter E appears to differ from the electron energy Ee, and
approximately equals E ≈ 0.5Ee (see [1, 6]).
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High-intensity limit for pure coherent radiation. If coherent radiation intensity is high, but
the incoherent radiation component is negligible, the contour integral (4) can approximately
evaluated by the steepest descent method, yielding a Gaussian distribution:

dwc

dω
≃ 1√

2πω2
1c

e−ρ2/2 (w1c ≫ 1). (9)

Here ρ = ω−ω1c√
ω2
1c

is the scaling variable, and ω1c =
∫∞
0 dω1ω1

dw1c
dω1

, ω2
1c =

∫∞
0 dω1ω

2
1
dw1c
dω1

are

single-photon spectral moments.
It is interesting whether the Gaussian limit is achievable at practice. For that, besides high

intensity, one also needs independence of the radiation spectrum on electron impact parameters,
which are to be averaged over. In oriented crystals such a condition is nontrivial to fulfill.
A possible case is radiation from electrons passing through a thick axially orientated crystal,
wherein fair impact parameter independence may emerge due to the dynamical chaos and
dechanneling. Fig. 3 shows the measured radiation spectrum under such conditions [7], along
with a fit by formula (9). The fit may be regarded as acceptable, though not perfect. A better
agreement can be obtained with the account of Chebyshev’s correction for skewedness [1].
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Figure 3. Energy loss probability spectrum
for radiation from 40 GeV electrons traversing
2.5 cm thick Ge crystal along ⟨110⟩ axis.
Points, experimental data [7]. Purple curve,
the fit of Eq. (9) to the data.

0 5 10 15 20 25

Ω

Ω0

0.01
0.02
0.03
0.04
0.05
0.06
Ω0âw�âΩ

Ω1c

Ω0

Figure 4. Multiphoton spectrum for single-
photon spectrum (6-8) with parameters bω0 =
20, a = 0.3. Solid purple curve, exact
distribution; dashed black curve, parabolic
cylinder approximation 10).

Impact of incoherent radiation on the high intensity limit. The incoherent bremsstrahlung
component makes spectral moments diverge, thereby invalidating the Gaussian approximation.
But still, the radiation in the Bethe-Heitler ‘tail’ is not intense enough for the Lévy asymptotics
to become valid. Nonetheless, using convolution representations, we can attain an approximation
suitable for bω0 ≫ 1, though a < 1 (intermediate between Gaussian and Lévy distributions) [1]:

dw

dω
≈ 1

√
2πEaω2

1

1−a
2

c

e−γEa−ρ2/4D−a (−ρ) , (10)

D−a(z) being the parabolic cylinder function, and γE = 0.577 Euler’s constant. The behavior
of distribution (10) is illustrated in Fig. 4.
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4. Photon multiplicity spectrum
An observable complementary to the multiphoton spectrum is the photon multiplicity spectrum
(for its definition and method of measurement see [1, 4]). For this observable, the resummation
procedure gives [1]:

n̄(ω) =
1

dw/dω

1

2πi

∫ c+i∞

c−i∞
dse

sω+
∫∞
0 dω1

dw1
dω1

(e−sω1−1)
∫ ∞

0
dω′

1

dw1

dω′
1

e−sω′
1 . (11)

Alternatively, the knowledge of ∂
∂L

dw
dω from kinetic equation (3) or (2) may be used to obtain

n̄(ω) directly:

n̄(ω) = w1 + L
∂

∂L
ln

dw

dω
. (12)

As an illustration, in Fig. 5 we show n̄(ω) for the same conditions as in Fig. 2. There
is a monotonous though stepwise rise in the region where the spectrum dw

dω is well above the
Bethe-Heitler value, and it changes into a falloff and a slow (logarithmic) increase where the
Bethe-Heitler contribution dominates.
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Figure 5. Solid green curve, photon
multiplicity spectrum for the single-
photon radiation spectrum given by
Eqs. (6–8) with a = 0.1, bω0 = 2, and
ϵ = 0.1ω0 (the infrared cutoff). Dot-
dashed black curve, large-ω asymptotics
n̄(ω) ≃ w1c + n̄i(ω) = w1c + 1 + a lnω/ϵ.

At high radiation intensity, the Gaussian asymptotics of the spectrum dwc
dω corresponds to the

linear asymptotics of the photon multiplicity spectrum:

n̄c(ω) ≈ w1c +
ω1c

ω2
1c

(ω − ω1c) (w1c ≫ 1), (13)

i. e., the step-like behavior smoothens out. Linear behavior (13) is in accord with the initial
interval of experimental dependencies in Fig. 1c. With the account of incoherent radiation
component, when dw

dω obeys Eq. (10), n̄(ω) expresses through parabolic cylinder functions, too
(see [1]), and the initial linear dependence is followed by a turnover and subsequent logarithmic
growth.

5. A toy model for coherent radiation
The generic features of multiphoton coherent radiation spectra may be elucidated by example
of a simple model for the single photon spectrum2:

dw1

dω1
=

w1c

ω0
θ(ω0 − ω1) +

a

ω1
θ(E − ω1). (14)

Inserting (14) to (4) gives the integral

dw

dω
= e−w1c−γEa

1

2πi

∫ c+i∞

c−i∞

ds

(sE)a
exp

[
sω +

w1c

ω0s

(
1− e−sω0

)]
. (15)

2 The uniform spectral distribution of the coherent part (the first term) of dw1
dω1

corresponds to uniform angular

distribution of radiation in electron rest frame, instead of 1 + cos θ̃2 typical for dipole radiation.

RREPS13 and Meghri13 IOP Publishing
Journal of Physics: Conference Series 517 (2014) 012027 doi:10.1088/1742-6596/517/1/012027

5



Expanding further exp[−w1c
ω0s

e−sω0 ] =
∑∞

n=0
1
n!

(
−w1c

ω0s

)n
e−nsω0 and integrating termwise, we get

dw

dω
=

e−w1c−γEa

ω0

(ω0

E

)a ⌊ω/ω0⌋∑
n=0

(−1)n

n!
w

n+1−a
2

1c

(
ω

ω0
− n

)n−1+a
2

In−1+a

{
2

√
w1c

(
ω

ω0
− n

)}
, (16)

where In−1+a are the modified Bessel functions, and ⌊ω/ω0⌋ signifies the greatest integer smaller
than ω/ω0. Hence, for any given ω, the number of terms in the series is finite. Similarly, one can
derive a closed formula for n̄(ω), but it also involves derivatives of Bessel functions by index.

Eq. (16) can be used for quick generation of exemplary multiphoton distributions. Parameter
w1c is not in a strict correspondence with the magnitude of coherent radiation [say, b entering
Eq. (6]. But since function P obeys inequality 1

2 ≤ P (z) ≤ 1 (0 ≤ z ≤ 1), it seems reasonable

to choose w1c somewhere in the interval 1
2bω0 < w1c < bω0. In Fig. 6 we plot ω dw

dω for fixed a
and several values of w1c. The curve at moderate intensity (green band) can be compared with

the green curve of Fig. 2. The correspondence is fair at w1c ≈ 4
3 = 2

3bω0 = bω0

∫ 1
0 dzP (z).
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Figure 6. Energy spectra for coherent
radiation described by formula (16), for
parameters E = 10ω0, a = 0.1, and
w1c = 0.3 (red dashed curve); 4

3 ± 1
3

(green solid curves); 4 (blue dotted
curve). The middle green curve is close
in shape to the green curve of Fig. 2.

6. Concluding remarks
Multiphoton effects affect spectra of radiation in crystals with thicknesses & 1%X0 (1 mm for
Si). They not only bear on the overall normalization, but can also evoke a 2nd maximum, at
ω ≈ 2ω0, similar to effect of secondary harmonics in the intra-crystal potential, or non-dipole
effects. Besides that, they generate a suppression at low ω, superficially similar to LPM effect.
Thus, one needs to be careful at interpretation of spectral features in medium-thickness crystals.

At implementation of the resummation procedure, it is essential that averaging over impact
parameters must be performed at the final, not the initial stage. Sometimes that makes little
difference, as for the case radiation in an amorphous medium; but it may be crucial in other
cases, like for channeling radiation.

An inverse theoretical problem is the reconstruction of the single-photon spectrum from
calorimetrically measured multiphoton one [8]. The complete reconstruction procedure for
that (though restricted to conditions ω ≪ Ee and the absence of strong averaging effects)
was formulated in [1]. Its possible applications will be considered elsewhere.
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