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Abstract.

Charged particle beam diagnostics is a key task in modern and future accelerator
installations. The diagnostic tools are practically the “eyes” of the operators. Precision and
resolution of the diagnostic equipment are crucial to define the performance. Transition and
Diffraction Radiation (TR and DR) are widely used for electron beam parameter monitoring.
However, the precision and resolution of those devices are determined by how well the
production, transportation and detection of these phenomena are understood. This paper
reports on initial simulations of TR and DR spatial characteristics. A good consistency with
theory is demonstrated. Also, optical system alignment issues are discussed.

1. Introduction

Beam dynamic considerations demand very tight tolerances on most beam parameters and these
in turn dictate most of the requirements for beam instrumentation [1]. Particle beams with
extremely small emittances are generated in the damping rings and these must be conserved
over several tens of km of beam lines. This requires a precise control of the beam position over
a long distance. In most cases, the measurement of the beam size serves directly to compute
the transverse beam emittance. For next generation linear colliders such as the Compact Linear
Collider (CLIC) [1] or the ILC, transverse beam size measurements must have a resolution on
the micron-scale. Currently, a laser-wire scanner [2] is the main candidate for non-invasive
high resolution measurements. However, over a distance of more than 40 km many laser-wire
monitors would be required. This is both costly and difficult to maintain.

1.1. Transition Radiation

Optical Transition Radiation (OTR) appearing when a charged particle crosses a boundary
between two media with different dielectric properties has widely been used as a tool for
transverse profile measurements of charged particle beams in various facilities worldwide. OTR
monitors are simple, robust, and give a direct image of a two-dimensional beam profile. The
resolution of the OTR monitors is normally defined as a root-mean-square of the so-called
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OTR point spread function (PSF) [3]. The angular distribution can be used for beam angular
divergence measurements [4].

Following the approach for calculating TR from a particle passing through a boundary
between vacuum and an ideal conductor [5] and applying an ultra-relativistic approximation
(995, 0y, 7l < 1), the following equation is obtained for the vertical polarisation of the spectral-
angular distribution of intensity [6]:
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Here 0, and 0, are the radiation observation angles measured either from the mirror reflection
direction or from the particle trajectory, « is the fine structure constant and + is the charged
particle Lorentz factor. Eq. 1 is TR in the case of normal incidence, i.e. with no target tilt.
However, in case of large target tilt angles and ultra-relativistic electrons, Eq. 1 can still be used
for a tilted target.

1.2. Diffraction Radiation
Diffraction Radiation (DR) is produced when a relativistic charged particle moves in the vicinity
of a medium [7]. The spatial-spectral properties of DR are sensitive to a range of electron beam
parameters [8-10]. Furthermore, the energy loss due to DR is so small that the electron beam
parameters are unchanged. Therefore DR can be used to develop non-invasive diagnostic tools.
The ODR model considers the case when a charged particle moves through a slit between
two semi-planes i.e. only DR produced from the target is considered (see Fig. 1). In the case
of a horizontal slit, the vertical polarisation component is sensitive to beam size [10]. Eq. 2
gives the expression for the ODR vertical polarisation component convoluted with a Gaussian
distribution [10], where t, , = 70, 4, A is the observation wavelength, o, is the rms vertical beam
size, a is the target aperture size, @, is the offset of the beam centre with respect to the centre of

the slit and 1 = arctan (ty /v 1+ tﬁ). This model is applicable when the transition radiation

contribution from the tails of the Gaussian distribution is negligible, which means approximately
a > 4oy.
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This expression is valid for ultra-relativistic particles and large target tilt angles. For a slit
width a = 0 follows considering the above approximation that @, = 0 and o, = 0, that Eq. 2
results in the angular distribution for OTR in Eq. 1.

2. Zemax

Optical system design is no longer a skill reserved for a few professionals. The Zemax Optical
Design Program is a readily available commercial software package which integrates all the
features required to conceptualise, design, optimise, analyse and tolerance virtually any optical
system [11]. It is widely used in the optics industry as a standard design tool. Zemax supports
two modes, geometrical ray tracing and Physical Optics Propagation (POP). Strictly speaking,
geometrical ray tracing can only be used when the diffraction effect is negligible. The propagation
of light is a coherent process. A wavefront traveling through free space or an optical medium,
coherently interferes with itself. This is what is modelled in POP mode, using diffraction laws
to propagate a wavefront through an optical system interface by interface.
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In POP mode, the entire beam array must be stored in computer memory at once contrary to
the ray tracing mode. Therefore, a large quantity of RAM is needed when using the POP mode
for large sampling arrays and because imaging systems require large sampling to accurately
model aberrations. The wavefront is modelled using an array of discretely sampled points,
analogous to the discrete sampling using rays for geometric optics analysis. Each point in
the array stores complex amplitude information about the beam. The entire array is then
propagated in free space between optical interfaces. At each optical interface, a transfer function
is computed which propagates the beam from one side of the optical surface to the other, using
either Fresnel diffraction propagation or an angular spectrum propagation algorithm [12,13].
Zemax automatically chooses the algorithm that yields the highest numerical accuracy. The
diffraction propagation algorithms yield correct results for any propagation distance, for any
arbitrary source and can account for any surface aperture, including User Defined Apertures

(UDAs).

2.1. Physical Optics Propagation algorithm
Zemax propagates any spatial complex electric field defined by a 2D matrix. The electric field
is represented in three dimensions as

E(z,y,2)=E, 2+ E,y+ E.Z, (3)

where all E values are complex and &, ¢ and Z are the Cartesian unit vectors. Because the
beam is propagating along the local z direction, the first approximation made is to neglect
the E, component. By keeping track of the electric field components along both the z and y
axes, polarisation effects can be studied, such as transmission and reflection losses, polarisation
aberrations and the polarisation state of the beam. If polarisation effects are not required, the
x component of the field can be ignored, thus speeding up the computations.

For a beam with a radius R propagating over a distance Z, the Fresnel number N is defined

by
2
szx(m—Z>. (4)
Assuming Z > R, this expression reduces to

R2
Np = —.
F=3z (5)

The Fresnel number is equal to the number of Fresnel rings on the source plane that can be seen
from any point on the detection plane:

e Fraunhofer diffraction (far field): Np =0
e Fresnel diffraction (pre-wave zone if R > y\): 0 < Np < 1
e Angular Spectrum Propagation (near field): Np > 1

The decision on the Fresnel numbers, and thus on the algorithms used by Zemax, is based
on a pilot beam. By default, the pilot beam is an ideal Gaussian beam, with a waist, beam
size, phase radius and relative z position. The initial parameters may be generated by fitting
the Gaussian beam equations to the initial distribution. However, it is also possible to define a
pilot beam if the electric field defined at the source is a non-Gaussian beam.

In any case, the pilot beam is then propagated from interface to interface. At each interface,
new beam parameters, such as the new waist, phase radius, or position are computed. The
properties of the pilot beam are then used to determine if the actual distribution is inside or
outside the Rayleigh range, and what propagation algorithms are appropriate.
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2.2. Defining the source

Several types of beam are already predefined as source in POP: Gaussian Waist, Gaussian Angle,
Gaussian Size+Angle, Top Hat, File, Windows Dynamic Link Library (DLL) or Multimode.
Moreover, any source of light can be provided by the user in POP. The user has to define,
among others, the spatial distribution of the complex electric field of the source either in a
Beam File or in a DLL. In both cases, the parameters of the pilot beam have to be defined.
These are the pilot beam waist, the Rayleigh distance and the pilot position, both in x and y
directions.

The most practical way to define a source using an external program, is to compute the initial
electric field into a Windows Dynamic Link Library (DLL). Sample DLLs with source code are
provided with Zemax. These examples are of great help to see how the DLL should be written
to properly define the source amplitude and phase. The instructions to compile such a C source
file into a DLL can be found on the Zemax support website.

With a DLL, it is possible to define between zero and eight user defined data values as input
parameters in the computation of the beam properties. This is particularly useful when the
electric field is defined by an equation, whose parameters have to be changed by the user from
one simulation to the next (e.g. particle energy, observation wavelength, etc.).

Starting with the example C source file provided with Zemax, the only changes that had to
be applied are the equation of the electric field, the user-defined data values and the pilot beam
parameters which were set to 0. The OTR electric field programmed in the C source file is the
approximation of the electric field for y polarisation component induced by a single electron on
a target surface [14], based on the solution of Maxwell equations for a field of a charged particle
moving in free space. Up to a constant it is (see [5])

J (7
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Ey imag = 0.

Here x and y are two orthogonal coordinates of the target measured from the point of electron
incidence, v is the charged particle Lorentz factor, A is the radiation wavelength, K is the first
order modified Bessel function, Jy is the zero order Bessel function.

According to the Fresnel-Huygens principle, the field of the particles reflected off the target
surface represents the radiation field. For TR the entire field is reflected and propagates towards
the observation plane. In case of DR, only a part of the field is reflected, depending on the target
geometry.

3. Simulations
3.1. Comparing simulations with theory
In Fig. 2, the ODR angular distribution for various slit sizes at the detector plane created by
a single electron passing through a source with a 1 mm vertical slit (v = 4110, A\ = 400 nm)
is shown. This corresponds to the experimental conditions at the ODR monitor at the Cornell
Electron Storage Ring (CesrTA) [15]. The distance between the source and detector plane was
set to 100 m to ensure the angular distribution is fully defined. Comparing with the analytical
expression given in Eq. 2, a nearly perfect agreement can be observed.

At the Accelerator Test Facility (ATF), the OTR monitor uses an observation wavelength
of A = 550 nm for a beam Lorentz factor of v = 2500 [10]. The far-field requirement for

OTR is L > % = 0.55 m, therefore the distance of 100 m between source and detector

plane was more than enough to achieve a perfect consistency. The size of the source was
Tmaz = 10 - % = 2.188 mm to fulfil an infinite target approximation. Fig. 3 shows the effect on
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Figure 1: Geometry of the ODR production. Figure 2: ODR angular distribution for
various slit sizes compared with theory.

the angular distribution when moving the detector plane from the near-field into the far-field.
2 2
The distribution was simulated at three different distances from the source - % ﬂ’\, 2 - % and

10 - 7227)‘ This figure is in excellent agreement with analytical calculations [16].

The far-field condition for the parameters for the ODR monitor at CesrTA is fulfilled for a

distance L > 722—7?‘ = 1.08 m. The size of the simulated source was 7,4 = 10 - % = 2.617 mm.

As in the OTR case, Fig. 4 shows the effect on the angular distribution when moving the
detector plane from the near-field into the far-field, this time using a slit width of 300 pm. The
distribution was again simulated at three different distances from the source.
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Figure 3: OTR angular distribution for  Figure 4: ODR angular distribution for
various distances from source to image. various distances from source to image.

3.2. Optimisation and alignment of the optical system
After establishing agreement between simulation and theory when propagating in free space,
optical systems can be optimised and studied with respect to misalignment. Inserting a bi-
convex lens and putting the image plane in the back focal plane (BFP) of the lens, a full angular
distribution can be established in the near-field. Fig. 5 shows the ODR angular distributions
for various positions of the image plane. It can be seen that the ODR angular distribution is
very sensitive to distances away from the focal plane. The detector must therefore be exactly in
the back focal plane (BFP). The same simulation parameters as above were used. Zemax has a
built-in lens catalog, including most commercially available lenses. The position of BFP of the
biconvex chosen for the ODR optical system at CesrTA is 326.63 mm.

Simulating the ODR angular distribution when tilting the biconvex lens can be seen in Fig. 6.
To compare the change in the angular distribution pattern, the distributions are referenced to
a reference sphere and therefore centred at 6, = 0.
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Figure 5: ODR angular distribution for  Figure 6: ODR angular distribution for
various positions of the image plane (BFP is  various tilts about the y-axis.
the position of the back focal plane).

4. Conclusion and future prospects

With assumptions similar to theoretical boundary conditions, Zemax simulations of OTR and
ODR agree with the analytical expressions. The next step is to improve the simulation further
with including a tilt angle in the incident electric fields to enable simulating a tilted target.
With this, agreement can also be achieved for low energies.

Furthermore, simulations will be done applying a finite beam size. This can be achieved by
displacing the single particle with respect to the optical axis across the transversal profile. The
resulting angular pattern for each step can then be weighted and summed up. After comparing
this with analytical equations, the software will have been proven useful for studies of any type of
optical system using OTR or ODR. Introducing an off-axis incident field or even an arbitrarily
shaped aperture does not slow down the Zemax simulations noticeably and is therefore the
preferable method.

This will enable simulations of all misalignment errors and optimisation of a real optical
system to be implemented in a real diagnostic station (including viewports, polarisers, filters,
etc.). Field depth studies can then be done as well as investigations on the behaviour of the
OTR PSF in real optical setups. Also, beam divergence and energy spread will be included to
simulate realistic beam properties.
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