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Abstract. We investigate the electromagnetic fields and the radiation intensity for a charged
particle moving along an arbitrary closed orbit around a dielectric cylinder immersed into a
homogeneous medium. These results generalize our previous research in the special case of
a circular orbit. For the latter geometry it has been shown that under certain conditions
strong narrow peaks appear in the angular distribution of the radiation intensity in the
exterior medium. We discuss the influence of the trajectory shift from the circular one on
the characteristics of the peaks.

1. Introduction
Due to the unique characteristics of synchrotron radiation, such as broad spectrum, high flux,
high brilliance, it has wide applications (for reviews see [1]-[3]). Synchrotron light is an ideal
tool for many types of research and also has industrial applications including materials science,
biological and life sciences, medicine, chemistry. The wide applications of the synchrotron
radiation motivate the importance of investigations for various mechanisms of control for the
radiation parameters. In particular, it is of interest to consider the influence of a medium on the
characteristics of the radiation. The synchrotron radiation from a charged particle circulating in
a homogeneous medium was considered in [4]-[9], where it has been shown that the interference
between the synchrotron and Cherenkov radiations leads to remarkable effects. New interesting
features arise in the case of inhomogeneous media.

In a series of papers [10]-[16], we have investigated the influence of cylindrical boundaries
between two dielectrics on the characteristics of the synchrotron radiation. It has been shown
that under the Cherenkov condition for the material of the cylinder and the particle velocity,
strong narrow peaks appear in the angular distribution of the radiation intensity in the exterior
medium with respect to the dielectric cylinder. At these peaks the radiated energy exceeds the
corresponding quantity in the case of a homogeneous medium by several orders of magnitude.
The radiation propagating inside the dielectric cylinder is studied in [17, 18]. Similar features
for the radiation generated by a charge moving along a helical orbit around/inside a dielectric
cylinder have been investigated in [19]-[22]. The corresponding problem for a charge moving in
vacuum has been widely discussed in the literature (see, for instance, [2, 3] and references given
therein).
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In the previous research we have assumed that the particle moves along a circular trajectory
concentric with the cylinder axis or, in the case of helical motion, the projection of the helix
on the plane perpendicular to the cylinder axis is a concentric circle. In realistic situations the
trajectory of the particle may differ from the concentric circular one and it is of interest to
investigate the influence of this shift on the parameters of the peaks in the radiation intensity.
In the present paper we consider the electromagnetic fields and the radiation intensity from a
charge moving around a dielectric cylinder along a trajectory the projection of which on the
plane perpendicular to the cylinder axis is an arbitrary closed curve.

2. Electromagnetic fields in the exterior medium
Consider a point charge q moving along a helical trajectory around a dielectric cylinder with
radius ρc. The permittivity for the cylinder will be denoted by ε0 and the cylinder is immersed in
a homogeneous medium with dielectric permittivity ε1 (magnetic permeabilities will be taken to
be unit). In what follows the cylindrical coordinate system (ρ, φ, z), with the axis z directed along
the cylinder axis, will be used. We will assume that the projection of the particle trajectory
on the plane perpendicular to the z-axis is an arbitrary closed curve and the corresponding
motion of the charge is described by the functions ρ = ρe(t) and φ = φe(t) with ρe(t) > ρc.
The latter condition means that the charge does not cross the cylinder surface. The projection
of the charge velocity along the z-axis will be denoted v‖ assuming that it is a constant. The
components of the current density created by charge are given by the formula

jl = (vlq/ρ)δ(ρ − ρe(t))δ(φ − φe(t))δ(z − v‖t), l = ρ, φ, z, (1)

where vρ and vφ are the corresponding components of the charge velocity.
By making use of the formula for the Green function given earlier in [10], in the Lorentz

gauge for the vector potential one finds the following expression (the details will be presented
elsewhere)

Al(r,t) = − q

πc

+∞∑
m,n=−∞

∑
l′=ρ,φ,z

∫ +∞

−∞
dkz Gll′,n(m, kz, ωn (kz) , ρ)eimφ+ikzz−iωn(kz)t, (2)

where
ωn (kz) ≡ nω0 + kzv‖, ω0 = 2π/T, (3)

with T being the period of the transverse motion. For the functions in the integrand of (2) we
have

Gll′,n(m, kz, ω, ρ) =
π

4iσl+1−σl′

∑
p=±1

pσl−σl′B
(p)
l′,m,nHm+p(λ1ρ),

Glz,n(m, kz, ω, ρ) =
i2−σlkz

2ρc
Hm,m,z (n, λ1)

Jm(λ0ρc)
αmV H

m

∑
p=±1

pσl−1 Jm+p(λ0ρc)
V H

m+p

Hm+p(λ1ρ), (4)

Gzz,n(m, kz, ω, ρ) = −(iπ/2)
[
Jm,m,z (n, λ1) − Hm,m,z (n, λ1)V J

m/V H
m

]
Hm(λ1ρ),

where l, l′ = ρ, φ, σρ = −σφ = 1 and Gzρ,n(m, kz, ω, ρ) = Gzφ,n(m, kz, ω, ρ) = 0. In (4), Jm(x)
is the Bessel function, Hm(x) ≡ H

(1)
m (x) is the Hankel function of the first kind. We have also

defined new functions

Fm′,m,l (n, λ1) =
1
T

∫ T

0
dt vl(t)Fm′(λ1ρe(t))e−imφe(t)+inω0t, F = J,H, (5)
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with λ2
j = ω2

n(kz)εj/c2 − k2
z , j = 0, 1. Other notations used in (4) are as follows:

V F
m = Jm(λ0ρc)

∂Fm(λ1ρc)
∂ρc

− Fm(λ1ρc)
∂Jm(λ0ρc)

∂ρc
, F = J,H, (6)

and

B
(p)
l,m,n = Jm+p,m,l (n, λ1) − Hm+p,m,l (n, λ1)V J

m+p/V H
m+p

+
ipσl−1λ0

πρcαm
Jm(λ0ρc)

Jm+p(λ0ρc)
V H

m+p

∑
p′=±1

p′σl
Hm+p′,m,l (n, λ1)

V H
m+p′

. (7)

The function αm is defined by the relation

αm =
ε0

ε1 − ε0
− λ0Jm(λ0ρc)

2

∑
p=±1

p
Hm+p(λ1ρc)

V H
m+p

. (8)

Note that the equation αm = 0 determines the eigenmodes of the dielectric cylinder.
With the vector potential (2) we can find the electric and magnetic fields by using the

standard formulas. In the special case of circular helix coaxial with the cylinder axis one has
Fm′,m,l (n, λ1) = vlFm′(λ1ρe)δnm and the expressions given above are reduced to the ones derived
in [22].

3. Radiation intensity
Having the electromagnetic fields we can investigate the intensity of the radiation propagating
in the exterior medium. For λ2

1 < 0 the corresponding Fourier components are exponentially
damped for large values ρ, and the radiation at large distances from the cylinder is present
only under the condition λ2

1 > 0. The average energy flux per unit time through the cylindrical
surface of radius ρ, coaxial with the dielectric cylinder, is given by the Poynting vector:

I =
c

4πT

∫ T

0
dt

∫ 2π

0
dφ

∫ +∞

−∞
dz ρnρ · [E × H]. (9)

At large distances from the cylinder, the variable kz in the formulas given above corresponds
to the projection of the wave vector for the radiated photon on the z-axis. Instead of kz it is
convenient to introduce the angle θ between the photon wave vector and the cylinder axis in
accordance with the relation

kz =
nω0

c

√
ε1 cos θ

1 − β1‖ cos θ
, β1‖ =

v‖
c

√
ε1. (10)

For the radiation frequency one has |ωn| with

ωn = nω0/(1 − β1‖ cos θ). (11)

Hence, n determines the harmonic number of the radiation. We also have the following
expressions for λ1 and λ0:

λ1 =
nω0

c

√
ε1 sin θ

1 − β1‖ cos θ
, λ0 =

nω0

c

√
ε0 − ε1 cos2 θ

1 − β1‖ cos θ
. (12)
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The angular density of the radiation intensity at a given harmonic n, dIn/dΩ, with dΩ =
sin θdθdφ being the solid angle element, is defined by

I =
+∞∑

n=−∞

∫
dΩ

dIn

dΩ
. (13)

By using (2), at large distances from the cylinder, for the angular distribution of the radiated
energy per unit time we find

dIn

dΩ
=

q2

4π3c

n2ω2
0
√

ε1∣∣1 − β1‖ cos θ
∣∣3

+∞∑
m=−∞

[∣∣∣ ∑
p=±1

pD(p)
m,n

∣∣∣2 +
∣∣∣ ∑

p=±1

D(p)
m,n

∣∣∣2 cos2 θ
]
, (14)

with the notation

D(p)
m,n =

π

2ic

[
Jm+p,m(n, λ1) − Hm+p,m(n, λ1)

V J
m+p

V H
m+p

]

+
iπλ1

2ckz

[
Jm,m,z (n, λ1) − Hm,m,z (n, λ1)

V J
m

V H
m

]

+p
Jm(λ0ρc)
cρcαm

Jm+p(λ0ρc)
V H

m+p

[
kz

V H
m

Hm,m,z (n, λ1) +
λ0

2

∑
l=±1

Hm+l,m (n, λ1)
V H

m+l

]
, (15)

and
Fm+p,m(n, λ1) = Fm+p,m,φ(n, λ1) − ipFm+p,m,ρ(n, λ1), F = J,H. (16)

First let us consider a special case of a circular helix with ρe(t) = ρe = const and φe(t) = ω0t.
In this case vρ = 0 and Fm′,m,l (n, λ1) = vlFm′(λ1ρe)δnm. Hence, in (14) the term m = n
contributes only. The features of the radiation intensity in this special case have been discussed
in [22]. By using Debye’s asymptotic expansions for the Bessel and Neumann functions, it can be
seen that under the condition |λ1|ρc < n, at points where the real part of the function αn, given
by formula (8), is equal to zero, the contribution of the imaginary part of this function into the
coefficients D

(p)
n,n can be exponentially large for large values n. This leads to the appearance of

strong narrow peaks in the angular distribution for the radiation intensity at a given harmonic
n. The condition for the real part of the function αn to be zero has the form:

∑
l=±1

[
λ1

λ0

Jn+l(λ0ρc)Yn(λ1ρc)
Jn(λ0ρc)Yn+l(λ1ρc)

− 1
]−1

=
2ε0

ε1 − ε0
, (17)

where Yν(x) is the Neumann function. Note that (17) is obtained from the equation determining
the eigenmodes for the dielectric cylinder by the replacement Hn → Yn. Equation (17) has no
solutions for λ2

0 < 0, which is possible only for ε0 < ε1. Hence, the peaks do not appear for the
case λ2

0 < 0 which corresponds to the angular region cos2 θ > ε0/ε1. As necessary conditions for
the presence of the strong narrow peaks in the angular distribution for the radiation intensity
one has

ε0 > ε1, ṽ
√

ε0/c > 1, (18)

where ṽ =
√

v2
‖ + ω2

0ρ
2
c is the velocity of the charge image on the cylinder surface. The second

condition in (18) is the Cherenkov condition for the velocity of the charge image on the cylinder
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surface and dielectric permittivity of the cylinder. In figure 1, the full curve displays the
dependence of the angular density for the number of the quanta radiated per unit time,

dNn

dΩ
=

1
�|ωn|

dIn

dΩ
, (19)

as a function of the angle θ for the parameters β1⊥ = 0.9, β1‖ = 0.4, ρc/ρe = 0.95, n = 10.
We assumed that the cylinder is made of fused quartz with permittivity ε0 = 3.75 and the
particle moves in the vacuum (ε1 = 1). The dashed curve corresponds to the radiation
in the vacuum (ε0 = ε1 = 1). For the heights of the peaks one has (from left to right)
(�cT/q2)dNn/dΩ ≈ 2.8, 17, 16.9. For ρe ∼ 1 cm the corresponding radiation starts from
centimeter wavelengths and falls into the terahertz region for higher harmonics. Note that
for these wavelengths the imaginary part of the quartz permittivity is small.

0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

Θ

T�
c

q2

dN
n

d�

Figure 1. The dependence of the angular density for the number of radiated quanta,
(T�c/q2)dNm/dΩ, per period T of the transverse motion, as a function of the angle θ for
β1⊥ = 0.9, β1‖ = 0.4, ρc/ρe = 0.95, n = 10. The full curve corresponds to the radiation in
the presence of a cylinder made of fused quartz (ε0 = 3.75, ε1 = 1) and the dashed curve is for
the radiation in the vacuum (ε0 = ε1 = 1).

Analytical estimates for the heights and the widths of the peaks are given in [22]. These
estimates show that at the peaks the angular density of the radiation intensity increases with
increasing n. In realistic situations the growth of the radiation intensity is limited by several
factors. In particular, the factors which limit the increase, are the imaginary part and the
dispersion of the dielectric permittivity ε1 (see the discussion in [22]). As it can be seen from
(14), for a fixed value of the charge energy and in the case of circular motion, the product
ρ2

edIn/dΩ, with n �= 0, is a function of the ratio ρc/ρe alone. From here it follows that for a fixed
value of ρe −ρc and for large values of ρc, the angular density of the radiation intensity, dIn/dΩ,
decays as 1/ρ2

e. In this limit, the Cherenkov radiation remains only if the condition β1‖ > 1 is
obeyed. The features of this radiation are discussed in [22]. Note that, in the exterior region
the Cherenkov radiation is absent for the example presented in figure 1.

For general transverse motion of the charge and for a given radiation harmonic n, the angular
density of the radiation intensity contains the summation over m (see (14)). Now for a given
harmonic n we can have a set of peaks corresponding to different values of m and determined by
the condition (17) replacing n in the indices of the cylinder functions by m. From the asymptotic
formulas for the cylinder functions for large values of the order it follows that the peaks come
from the part of the trajectory for which |λ1|ρe(t) < |m|. At the peaks the coefficients D

(p)
m,n in
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the expression for the radiation intensity are estimated by D
(p)
m,n ∼ Ym,m,z (n, λ1),Ym+l,m (n, λ1),

where the functions Ym,m,z (n, λ1) and Ym+l,m (n, λ1) are defined by the relations (5) and (16)
taking in the integrand of (5) Fm(λ1ρe(t)) = Ym(λ1ρe(t)). For large values of m > 0 we can use
the Debye’s asymptotic formula

Ym (my) ∼ 2 (sgn y)m+1 emζ(y)

√
2πm (1 − y2)1/4

, |y| < 1, (20)

with ζ(y) = ln[(1 +
√

1 − y2)/ |y|]−
√

1 − y2. The most strong peaks correspond to the part of
the trajectory for which the function ζ (λ1ρe(t)/m) is maximum. For given values of n and m
this corresponds to the minimum of the function ρe(t). The parameters of the peaks depend on
the form of the trajectory.

4. Conclusion
In the present paper we have considered the radiation from a charged particle moving around a
dielectric cylinder along a helical trajectory the projection of which on the plane perpendicular
to the cylinder axis is an arbitrary closed curve. Our aim was to study the sensitivity of the peaks
appearing in the angular distribution of the radiation intensity with respect to distortions of the
particle trajectory. By using the Green function from [10], the expression for the corresponding
vector potential is presented in the region outside the cylinder.

We have derived a formula for the spectral-angular density of the radiation intensity in the
exterior medium. The latter is given by the expression (14) with the coefficients defined by (15).
In the case of a circular motion concentric with the cylinder axis, in (14) the term with m = n
survives only and we obtain the results previously discussed in [22]. Instead of a single peak in
the angular distribution of the radiation intensity at a given harmonic n, for the case of general
motion we have set of peaks corresponding to different values of m. The parameters of the peaks
depend on the form of the trajectory. The most strong peaks correspond to the radiation from
the part of the trajectory closest to the cylinder surface.
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