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Abstract. Nowadays the achievements in accelerator physics allows us to operate with ever-
growing energy of the particles beams. However, the increase of the beam energy requests
new issues to be resolved. For instance, it becomes necessary to develop new techniques for
beam diagnostics. One of the promising solutions for beam diagnostics is based on diffraction
radiation (DR).

In this work similar to the methods of bunch length measurement based on transition
radiation, the longitudinal size of a bunch is retrieved from the dependence of the DR intensity
on the wavelength of radiation. Such dependence is expressed by so-called form-factor, which
in turn depends on the beam parameters. Influence of the beam divergence on the form-factor
of a beam has been examined in this work.

1. Introduction
One of the attractive DR features is the fact that it appears without direct contact, interaction,
between the particle and the discontinuity, in general case, of the medium. Combined with the
low radiation intensity with respect to the particle energy, it makes DR a great candidate for
non-invasive beam diagnostics instrument.

DR from one particle passing through the slit system was considered in a number of papers
[1–3]. However, in a real experiment we practically always deal with radiation by the bunch
of particles [4, 5]. The intensity of radiation emitted by the beam depends on its coherence,
on the beam form-factor. Such dependence can be used for the bunch length measurement [6].
The influence of the beam size on its form factor was previously studied both theoretically and
experimentally [7, 8]. The present work is dedicated to theoretical investigation of the beam
divergence influence on the beam form-factor that can be revealed from the DR spectrum.

2. DR theory
DR from one particle was studied in a number of papers [1, 2] and we do not consider this
case in details. In this work we use the approach, which was applied, for example, in [9, 10].
Following those works we will consider one of the components of the DR field. Let us consider
the coordinate system associated with the particle trajectory (figure 1). In such coordinate
system the unit vector ez is directed along the particle velocity V, the unit vector ex is parallel
to the half-plane edge and ey is perpendicular to the edge. In further calculations we consider
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only one of the components of the DR field, namely Ey. Omitting some known details the Ey
component for DR from infinite half-plane can be presented in the form

EDRy =
e

2π2V

e−h1(
√
k2x+α

2+iky)

(
√
k2x + α2 + iky)

, (1)

where V is the particle velocity, e is the particle charge, h1 is the impact parameter half-plane,
the coefficient α = k

γβ , where k = (kx, ky, kz) is the wave vector, γ = (1 − β2)−1/2 is the

relativistic parameter, β = V/c is the normalized particle velocity, and c is the light velocity.

Figure 1. Scheme for DR from a infinite half-plane. The direction of the DR is defined by
angles Θ and ξ. Θ is the angle between radiation vector and velocity vector, ξ is the angle
between the plane of radiation and the y0z-plane.

As above mentioned, in this work we consider DR applied to the longitudinal beam
diagnostics. For such diagnostics it is necessary to know the form-factor dependence on the
wavelength of radiation. Influence of both longitudinal and transverse sizes of the beam on
its form-factor is considered earlier [11, 12]. In present work we consider the beam divergence
influence on its form-factor as well as the case when such influence is meaningful.

It is well known that intensity of radiation emitted by the beam (in general case any radiation,
synchrotron radiation, transition radiation, etc...) depends on its coherence degree [13] and can
be written as

I = I0(N +N(N − 1)F ) , (2)

where N is the number of particles in the beam, I0 is the intensity of radiation from a single
particle, and F is the beam form-factor. The coherence degree of the beam expressed by its
form-factor, which, in turn, depends on the parameters of the beam and on the wavelength of
radiation. Thus, having known the dependence I(λ), we can obtain the beam parameters. Such
technique is widely used today for longitudinal beam diagnostics of short bunches.
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Full form-factor of the beam based on transition radiation [14] can be determined in the
following way

Fbeam =

∣∣∣∣∣∣
∫
V

S(r)e−iφ(r)dr

∣∣∣∣∣∣
2

, (3)

where S(r) is the normalized particles distribution inside of the beam, and φ(r) is the phase
difference between the particles [2]. The integral is taken over the all volume occupied by the
beam. However, as shown by equation (1), for DR the intensity emitted by one electron depends
on the impact parameter and, as a consequence, can vary for different particles. For the far-field
approximation we can consider DR as emitted by one point (figure 1). Thus, the strength of
DR field can be expressed by

E(y) ∝ E0e
−2πy

√
1 + γ2β2 sin2 Θ sin2 ξ

γβλ , (4)

where E0 is the constant amplitude, y is the impact parameter and λ is the wavelength of
radiation. Both angles Θ and ξ define the direction to the observation point (figure 1). Hence,
the form-factor of the beam with respect to DR can be presented in the form

FDR =

∣∣∣∣∣∣∣∣
∫
V

S(r)e
−2πy

√
1 + γ2β2 sin2 Θ sin2 ξ

γβλ e−iφ(r)dr

∣∣∣∣∣∣∣∣
2

(5)

3. Beam divergence from a form-factor for DR
The influence of the beam divergence on its form-factor were earlier considered for transition
radiation [15]. In that work the influence of the beam divergence on the intensity of radiation
were separated from that caused by the spatial beam distribution. In our approach below the
beam divergence to be taken into account will be reveled from analysis of phase shifts.

Let assume the total particle distribution inside the beam to be defined by two independent
distributions in longitudinal and transverse directions

S(r) = Slong(z)Str(x, y) (6)

In this case the phase difference for various beam particles is defined as follows (figure 1)

φ(r) =
2π

λ
(x sin Θ sin ξ +

z

β
) (7)

Taking into consideration equations (6) and (7), equation (5) for the beam form-factor
becomes equal to

FDR =

∣∣∣∣∣∣∣∣
∫
dxdydzSlong(z)Str(x, y)e

−2πy
√

1 + γ2β2 sin2 Θ sin2 ξ

γβλ e
−2πi

λ
(x sin Θ sin ξ +

z

β
)

∣∣∣∣∣∣∣∣
2

(8)
For relativistic beams the longitudinal size is usually much larger than its transverse size for

the observer. For this reason, the beam form-factor is often defined as its longitudinal form-
factor. Let us consider the beam with Gaussian distribution in longitudinal direction and neglect
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(a) (b)

Figure 2. The additional phase difference appearance for particles with different incident
angles. Here the impact parameters for both particles are equal to h. In figure b the particle e2
has an incident angle ψ.

its transverse size. In order to take into account the beam divergence let us consider ”z0y” plane
as shown in figure 1.

For normally incident particles (figure 2(a)) the phase difference is defined by the distance
between particles inside the bunch (see equation (7)). However, if one of the particles passes
near the half-plane with non zero incident angle (figure 2(b)) additional phase difference appears.
Here we assume that radiation is emitted when the particle field reaches the point of radiation.
Thus, new phase difference can be defined as

φ(r, ψ) =
2π

λβ
(z + h tanψ), (9)

where h is the impact parameter, which is considered to be constant for all particles inside the
beam. Since in a new expression for the phase difference a new variable has appeared, we need
to extend the expression for the beam form-factor (8). Let Sdiv(ψ) be the angular distribution
of the particles inside the beam. Thus, assuming that spatial and angular distributions are
independent, another expression for the beam form-factor can be written

FDRdiv =

∣∣∣∣∫ dxdydzdψSlong(z)Str(x, y)Sdiv(ψ)×

×e
−2π(y − h)

√
1 + γ2β2 sin2 Θ sin2 ξ

γβλ e
−2πi

λ
(
z

β
+

(y − h) tanψ

β
)

∣∣∣∣∣∣∣∣
2

(10)

Let consider the beam angular distribution as Gaussian distribution, and ψ to be small
enough, thus tan(ψ) ∼ ψ. Then, one can analytically derive the form-factor, in the form

FDRdiv ∼ e
− 2π2

λ2β2
(σ2
z+h

2σ2
div) , (11)

where σz is the standard particle deviation from the beam center in longitudinal direction, and
σdiv is the standard particle deviation from the normal incidence. We would like to remind that
in this approximation the transverse beam size has been neglected. For relativistic beam, β ∼ 1,

RREPS13 and Meghri13 IOP Publishing
Journal of Physics: Conference Series 517 (2014) 012023 doi:10.1088/1742-6596/517/1/012023

4



the divergence could play an essential role in the beam form-factor if the condition λ ∼ hσdiv is
satisfied. For h ∼ γλ this condition can be transformed into σdiv ∼ 1/

√
2πγ. Let estimate the

divergence contribution in a beam form-factor for the system of electron beam with γ = 1000
and divergence σdiv = 100 µrad, passing at the half-plane, assuming that the wavelength of
radiation is λ = 800 nm. The impact parameter thus equals to h ≈ γλ = 1 mm. The divergence
contribution in a beam form-factor is expressed by the following exponent e−2π2γ2σ2

div ≈ 0.82. It
is not negligible that means, the beam form-factor obtains an additional coefficient (less than
unit) due to the beam divergence.

4. Conclusion
In presented work the role of the beam divergence in its form-factor for DR has been analyzed.
It is shown how beam divergence could influence on the form-factor as well as when this influence
may be significant. However, in the approximation we used the transverse beam size has been
neglected. Such assumption is allowed only if the beam size is much smaller than the impact
parameter. Moreover, in such approximation, even for relativistic beam its divergence has to be
taken into account under the conditions σdiv ∼ 1/

√
2πγ. The influence of the transverse beam

size on the beam form-factor usually can be neglected, that allows us to equate the longitudinal
form-factor(which depends only on longitudinal size) with its total form-factor.

In this work the evaluation of the beam form-factor for radiations, such as synchrotron or
transition, to the beam form-factor for DR taking into account the beam divergence has been
considered. More accurate expression for DR beam form-factor without neglecting the transverse
beam size will be separately determined in the future.
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