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Abstract. It is given a review of the theoretical works showing that gamma ray 

Cherenkov-transition radiation (GCTR) is produced in some materials the refractive 

index of which in gamma region is greater than 1 according to the famous results of 

[1]. Since there are some published doubts [2] on the theoretical results of [1], and 

taking into account the difficulties of the experiment [1], in order to confirm or decline 

the results [1] it is proposed to study experimentally GCTR and an experimental 

method for the measurement of refractive index of MeV photons.  

 

 

1. Introduction or formulation of the problem 

In figure 1 it is shown qualitatively the behaviour of the dependence of the refractive index ( )n   of 

substances on photon energy  . As it is seen up to the X-ray region, excluding some narrow regions 

at anomaly dispersion frequencies, the refraction index is greater than 1, while when ( )n  >0.1 keV 

( )n  <1.   

 
 

Figure 1. The dependence of n of substances upon ћω. 
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Usually, one presents the complex values of )(  and )(n  in the forms: 

)('')('1)('')(')()( 2  iin  
and

 )()(1)(  in  where '  and 

''  are the real and imaginary parts of the susceptibility, and )('   and )( are connected with the 

refraction, while )(''  and )(  describe the absorption of photons with absorption length
  

))(''/()(/1  cLabs where µ is the linear absorption coefficient. 

Now according to sensational experimental and theoretical results of [1] for silicon and gold 

( ) 1,n    
or 0  for 1  MeV. This has many important consequences and applications (see 

[3–6]) for nuclear physics, gamma optics, etc. Gold lenses, similar to Snigirev X-ray lenses, have been   

prepared in order to focus gamma ray beams. However, no new experimental results and answer to [2] 

has been published. The difficult experiment [1] has been carried out at Institut Laue-Langevin on the 

facility GAMS5 measuring the nanoradian relative diffraction angle for three lines of Cl
36

 target 

bombarded by thermal neutrons when a Si wedge is inserted between the two crystals of a double 

Bragg diffraction spectrometer. The measured relative diffraction angles allowed to determine 

  (+1.83±1.57)x10
-10

, (+1.48±0.13)x10
-9

 and (+1.11±0.30)x10
-9

, for 786, 1165 and 1951 keV 

photons, respectively, while the  measured for lower energies are negative according to the formula 
2/12 ])/(1[)(  Pn . 

The authors of [1] using the cross section of various processes, mainly of the QED nonlinear 

process of Delbruck scattering calculated with the help of a complicated non- perturbative QED theory 

obtained good agreement between the experimental and theoretical results on  . However, A 

comment [2] on the work [1] has been published in which it has been shown that even using the 

Delbruck scattering cross sections given in [1] the contribution of Delbruck effect into δ is 10
-6

–10
-5

 

times less than it was estimated in [1]. Since there is no answer to [2] and no new experimental and 

theoretical results one can conclude that there is a problem in XXI century physics which it is better to 

solve experimentally. 

On the other hand, it is well known that when a particle passes through a substance with 

1)( n it can produce Cherenkov radiation (CR) in radio-optical region (see [7, 8]) and X-ray region 

(XCR) near K-, L- edges (see [9,10]). Using the results of [1] on )( n >1 for photons with  786 

keV in the work [11a] it has been developed the theory of GCTR produced in a plate of material using 

the more confident experimental data of [1] in the region 786–2000 keV. In [11b] the theory of GCTR 

produced in a plate of material using the theoretical data of [1] in a wider region 786-10000 keV has 

been given, while the problems of the formation length and GCTR produced at a single interface and 

in stack of plate have been considered in [11c]. Looking for other methods of manifestation of the fact 

that in gamma ray region the refractive index can be greater than 1 in [11d] it is considered a simpler 

and direct method for the measurement of )( n  using total internal (TIR) and external refection 

(TER) of MeV photons. In this work it is given a review of the works [11]. 

 

2. Theory of GCTR based on Ginzburg-Frank-Garibian Theory of TR  

2.2a. GCTR produced at an interface between two media and its formation length 

Let us first consider the formation length in medium of GCTR. According to [12, 13] the formation 

length of XTR is a complex magnitude and is given by the expression  

2 2

2
( )

( )
Med

V
Z




   


 
 .                                               (1) 

From (1) one obtains for the formation length, 
Form

MedL   

2222 '')'(

12








V
ZL Med

Form

Med
,                                         (2) 

RREPS13 and Meghri13 IOP Publishing
Journal of Physics: Conference Series 517 (2014) 012008 doi:10.1088/1742-6596/517/1/012008

2



 

 

 

 

 

 

from which the formation length in vacuum ( )0'''   is equal to )/(/2 22  VLForm

Vac  
 

with a maximum at 0  equal to 2GCTRvacL  as for other types of radiation. As it follows from 

(8) when GCTR takes place and the condition 0'

1

22   is satisfied abs

Form

Med LL  2 .   

The spectral-angular distribution of the number of photons of GCTR produced at an interface of 

two media (Si-vacuum) is derived substituting the values of χ’ and χ’’ into the formulae (1.59) [13] for 

XTR. In small angle and γ>>1 approximation one obtains 

]'')'[()(

)'''(2

)( 2222222

2232










  dd

Nd GCTR .                         (3) 

 

2.2b. GCTR produced in a plate 

Inserting the values of the complex  into the XTR spectral-angular distribution (formula (2.21) of 

[13] or formula (3.27) of [9] for a plate one derives the following formula for the spectral-angular 

distribution of GCTR 
2 3 2 2

2 2 2 2 2 2 2

2 2 2
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2 ( ' '' )
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1 exp 4exp sin ,
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       

.             (4) 

where radL  is the thickness of the plate-radiator.                                                          

 

2.2c. GCTR produced in a stack of plates 

The necessary expressions obtained with the help of corresponding formulae (3.15) of [13] as well as 

numerical results are given in [11c] and will not be discussed here. Before proceeding it is important to note 

the following: In contrast to XTR, due to the facts that for GCTR  absrad LL  a few cm, and the requirement 

that the particle velocity must be changed insignificantly, therefore, it is necessary to have 01.0 XLrad   ( 0X  

is the radiation length of the radiator material), GCTR produced in a stack of plates as well as at one interface 

have no practical values since the GCTR yield from a stack of plates can not exceed the GCTR yield from a 

plate and it is not reasonable to consider GCTR production at one interface because one can not replace the 

infinite medium of a single interface with a plate thinner than absL . Therefore, further it will be considered 

only GCTR produced in a plate with radL 1 cm given by (4) which will be integrated (numerically, because 

analytically it is very complicated or impossible) over ,   and over both  and   to obtain   

)(/ ddNGCTR , ddNGCTR /  and GCTRN , respectively. 

 

3. Numerical results on GCTR produced in a plate 
The below given numerical results described in details in [11b], have been obtained for electron energy E = 20 

GeV if there is no especial remark, and only for Si radiators with thickness Lrad = 0.1Х0 = 1
 
cm using the values 

of  2' (from [1]) 
 
and  /'' c  

(from various tables for  ).  

 

3.1. The spectral distribution of the number of GCTR photons 

)(/ ddNGCTR  is shown in figure 2 (curve “1”). The curve “2” of figure 2 shows the spectral distribution of 

the background bremsstrahlung calculated taking into account the longitudinal density or Ter-Mikaelian  
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Figure 2. The spectral distributions of GCTR and bremsstrahlung. 

 

effect (see [12]). As it follows from figure 1 GCTR intensity exceeds the background bremsstrahlung 

intensity in a wide interval from 800 keV up to 6000 keV with S/N>>2. The total number of GCTR 

and background photons obtained by numerical integration of the curve “1” and “2” of figure 2 over 

ћω are GCTRN =1.34 and BrN = 0.1. 

  

3.2. The angular distribution of GCTR 

ddNGCTR /  obtained integrating (4) over   in the interval 800–10000 keV is shown in figure 3. 

 

 
 

Figure 3. The angular distribution of GCTR. 

 

From figure 3 it follows that GCTR is emitted mainly in the angular interval from 30 rad up to 

50  rad.  

 

3.3. The dependence of GCTR on the electron energy 

The energy dependence of the total number of GCTR (solid curve) and bremsstrahlung (dashed curve)  

photons is shown in figure 4. As it seen in figure 4 the number of the GCTR photons as in case of 

XTR exceed the background and begins to increase sharply beginning from a “threshold” energy about 

12 GeV. Then with the increase of E a “saturation” achieves with GCTRN 3.4. As it is has been 

shown still in [12, 14] the number of the XTR photons in transition radiation detectors (TRD) from a 

stack of plates without and with taking into account the absorption is equal to XTRN  ~11 and ~2 and 

exceeds the background bremsstrahlung only in a relatively narrow region  )( (2–30) keV, and 

this allows to construct TRD detectors, which found wide application for particle identification. 

Therefore one can use GCTR also for the same purpose.  
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Figure 4. The dependence of the number of the 

GCTR (solid line) and background (dashed line) 

photons. 

 

 

3.4. The dependence of the GCTR yield on the radiator thickness 

Figure 5 shows how GCTRN  depends on radL . Around Lrad= 1 cm GCTRN  is proportional to radL , and 

the electron energy losses are still small. Therefore, it is reasonable to take radL ~(2-10) % X0, and as 

the calculations (see [11]) show the use of a stack of plates instead of a plate has no advantage. 

 

 

 

 

 

 

 

 

 

Figure 5. The dependence of GCTRN  on radL . 

 

 

4. Experimental possibilities 

One can use an experimental arrangement similar to those used at SLAC [15] and CERN SPS [16] and 

[17] for the study of various types of radiation of 1–200 GeV electrons. Without discussing the 

proposed arrangement let us note that the SLAC beam has the difficulty that it must contain 1 electron 

per pulse, while the SPS beam being much longer, allows to detect a few GCTR photons per pulse. 

The analysis of the spectra measured by 25 GeV electrons in  = (1–10) MeV region did not reveal 

any exceeding over the calculated spectra of bremsstrahlung of various theories [15]. Probably, one 

cannot use this fact to decline the results of [1] may be because no measurements on Si have been 

performed. 

 

5. Measurement of the reflection index of MeV photons using total internal and external 

reflection  
It is well known that if )(n >1 (optical) it can take place TIR at the boundary medium-vacuum with 

TIR

cr = arcsin(1/n). Similarly, if )(n <1 (X-rays) it can take place TER at the boundary vacuum – 

medium with 
TER

cr = (2δ)
1/2

. If δ~ 10
-9

, 
TER

cr = 45 μrad, which is not very small, rad , as the angles in 

[1]. In many works of the past (see, [18]) it has been proposed, but not realized, to use TER for various 

purposes, in particular, for the “monochromatization” of MeV photon beams. However, such MeV 

experiments become realistic only recently connected with the advance of the method of inverse 

Compton scattering intense photon sources [19]. Suitable parameters are available at present at the 

facility HiGS of Duke university, which provides 10
8
–10

11
 ph/s in a ~10 % BW, and soon at the ELI 

facility in Romania, which will provide ~10
13

 ph/s in a ~1 % BW. 
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Figure 6. An arrangement for the measurement of )(n  of MeV photons.  

 

Figure 6 in which the main Si reflector will be replaced by that of the insert “1” for ( )n  <1 and 

( )n  >1, respectively, explains the method of the measurements. First let us assume that ( )n  >1. 

Increasing the glancing angle gl  by rotating the Si targets one can expect the well known 

dependences of the rate of TER (or TIR) photons detection rate of the reflected (transmitted) photon 

detector upon gl
 
(see the insert ‘2’ of figure 6), from which δ is determined from the measured 

TER

cr =(2δ)
1/2

 with an error ± 2/gl . To carry such measurements it is necessary to have (1–10) 

MeV photon beams with 1) angular spread much less than the above 45 radTER

cr    and 2) sufficient 

intensity. The first condition is satisfied by the fact that only a small fraction 2

rad( / )accF    of the 

beam of the photon source with angular spread  /1rad  emitted under angles smaller than 

glθ / 2acc T L   (T is the sizes of the reflector, L is the distance between the source and reflector), 

strikes the Si reflector. Taking T=3 cm, L=10 m, one obtains for HiGS (γ=2.4x10
3
), F=10

-8
.  

 

 
 

Figure 7. The proposed set-up for the reflected and transmitted photon detectors. 

 

Therefore, for HiGS one expects to detect ~1–10
3
TER ph/s, and the experiment is feasible. 

However, in reality one must take into account that the HiGS beam is available after 2 collimators at a 

distance of detL  60 m from the source as well as the difficulties of photon detection by the reflected 

and transmitted photon detectors connected with the smallness of the reflection angles (see [11d]). For 

this purpose the set-up of figure 7 is proposed in which the photons are detected separately at 

detL  60 m using 2 LaBr3, scintillators. These problems can be solved better with the help of PET 
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liquid xenon time projection chamber (LXeTPC) [20] or proposed LXeTPC on the basis of graphene 

[21]. 

 

6. Conclusion 

At present it is possible to study the predicted GCTR using E 20 GeV electrons at SLAC or of 

CERN and to measure directly )(n  of various materials in MeV region using TER or TIR. These 

experiments can confirm or decline the discovery of [1]. 

  

References 

[1]   Habs D, Gunther M M, Jentschel M and Urban W 2012 Phys. Rev. Lett. 108 184802 
[2]   Donohue J T 2013 Phys. Rev. Lett. 110, 129501 

[3]   Habs D, Gunther M M, Jentschel M and Thirolf P G 2012 ArXiv:1201.4466  

[4]    Jentschel M 2013 Gamma Ray Optics http://www.inn.jir 

[5]    Habs D 2013 Delbruck scattering, non-perturbative QED and possible applications  

 http://www.eli-np.ro  

[6]    CERN Courier 2012 July 18  

[7]    Jelley M 1958 Cherenkov Radiation and Its Applications (Pergamon Press, London)  

[8]    Zrelov V P 1968 Izluchenie Vavilova-Cherenkova i Ego Primenenie  

v Fizike Visokikh Energii (Moscow, Atomizdat)  

[9]   Bazilev V A and Zhevago N K 1987 Izluchenie Bistrikh Chastits v Veshchestve i vo  

Vneshnikh Polyakh (Moscow, Nauka)  

[10]   Ispirian K A 2005 X-Ray Cherenkov Radiation, NATO Sc. Ser. II, Math. Phys Chem.  

199 217 

[11]  Aginian M A, Ispirian K A and Ispiryan M, To be published in a) 2013 European Physics 

Letters; b) 2014 Izvestya of NAS of Armenia; c) 2014 Proc of this Conf.; d) 2014 Proc of this 

Conf.  

[12]  Ter-Mikaelian M L, High Energy Electromagnetic Processes in Cond. Media, Wiley Intersc., 

N Y, 1972 

[13] Garibian G M, Yan Shi 1983 Rentgenovskoe Perekhodnoe Izluchenie, Publishing  

home of Academy of Sciences of Armenia (Yerevan, Armenia)  

[14]   Ispirian K A 1965 Dissertation, Yerevan State University  

[15]   Klein S 1999 Rev. Mod. Phys. 71, 1501 

[16]   Hansen H D, Uggerhoy U I, Biino C et al 2004 Phys. Rev. D 69 032001 

[17]   Mazzolari A et al 2014 To be published in Proc of this Conf. 

[18]   Kumakhov M A 1986 Radiation of Channeled Particles in Crystals, Energoatomizdat, 

Moscow,  

[19]  Wu Y K, Overview of present and future Compton photon sources, PAC 2012, 

TUXB03 

[20]  Lewellen T K 2008 Phys. Med. Biol  53  R287-R317 

[21]  Ispirian K A and Ispiryan R K 2011 Nuovo Cimento 34 37 
  

RREPS13 and Meghri13 IOP Publishing
Journal of Physics: Conference Series 517 (2014) 012008 doi:10.1088/1742-6596/517/1/012008

7


