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Abstract. Cross-sections of coherent production of relativistic (moving with relativistic 

velocities) singlet Ps atoms in the ultrathin crystal have been calculated and estimations of 

counting rates are obtained to propose the experiments.  

1.  Introduction: a short historical survey, key questions, challenges and motivations for future 

studies 

The first papers on production of relativistic (moving with a relativistic velocity) positronium (Ps) 

atoms by high-energy photons and electrons in the Coulomb field of the separate atom [1–4] were 

published more than 27 years ago. The further developments of the theory (beyond the Born 

approximation) was performed in the papers [5–8], again many years ago.   

The next step in this story was connected with theory of coherent production of singlet Ps atoms by 

high-energy photons in a crystal [9]. The next paper [10] was dedicated to coherent production of 

relativistic Ps (singlet and triplet) by high energy electrons.  According [9] and [10], the sharp 

coherent peaks may appear in photo – and electroproduction cross-sections at definite Ps energies and 

emission angles. 

The investigations in this field have been continued in the later works [11–13]. In particular, more 

detailed theoretical investigations of Ps coherent type B photo- and electroproduction in the crystals 

was presented in Ref. [12]. In fact, besides theoretical studies of cross - sections, it was the 1
st
 real 

proposal of experiment on coherent Ps photoproduction at REFER (Hiroshima University, Japan). 

Unfortunately, the experiment was not done at that time.  

The QED process closely connected to coherent Ps photoproduction in a crystal is the coherent 

photoproduction of free (non-bound) electron-positron pairs. The idea of the first experiment on 

coherent type B e+e- pairs photoproduction in a crystal [14] was to approach Ps production 

kinematics, i.e. to detect created e+e- pairs under hard collimation. The experiment [14] was 

successful and resulted in observation of brilliant coherent effect in the yield of symmetric (equal 

energy) electron-positron pairs in the kinematics “approaching Ps kinematics”. 

The problems connected with Ps generation and their experimental investigation were the subject 

of International Workshop ''Hadronic atoms and positronium in the standard model'' Dubna 1998. [15] 

and XII International Workshop on Positron and Positronium Physics (Sandbjerg, Denmark 19–21 

July 2003) [16]. More than 10 years passed since these Workshops, but predicted coherent effects still 

have not been observed experimentally.  

Why is it interesting to study these effects experimentally? 
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1. The new coherent effects in a crystal target at a few hundreds MeV photon/electron beams 

energies can be discovered, while the detection seems the worth challenge for experimentalists. 

2. Having the monochromatic beam of Ps atoms, one can consider the possibility the direct 

measurement of singlet Ps lifetime in a vacuum. All previous measurements were concerned with 

lifetime measurements of Ps stopped in a matter. 

3. Production of Ps atoms by the photons/electrons in the Coulomb field of an atom is one of the 

QED effects, still not observed experimentally. Using of the crystal target allows increase in Ps yield 

in comparison with amorphous target. 

Here, we reexamine the experimental proposal [14] in connection with programs of current and 

planned experiments on crystal-assisted processes using high energy photon and electron beams at 

SAGA-LS (Japan), MAMI (Germany) and BTF (LNF Frascati). 

2.   Coherent production of relativistic singlet Ps atom by high-energy photons 

Differential over emission angles cross - section of singlet Ps production by a photon with the energy 

 in the Coulomb field of an atom is [2–3]: 
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Here,   is the fine structure constant,  and  are the relativistic factor and velocity of created Ps,  is 

Ps emission angle with respect to a photon momentum, m is an electron  rest mass, Z is nuclear charge 

of the target atom (units  =c=1 are used). The transferred to an atom momentum squared is: 

    cos21cos2 22222 EEppEq  .                                   (2) 

Here, E =  is the Ps energy. If the z axis is parallel to a photon momentum, OZ||k , then the 

components of the momentum transferred are 
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Here, p is the momentum of created Ps,  is the angle of Ps momentum in a plane perpendicular to the 

photon momentum. Let us introduce the transverse component of the momentum transferred, 

},{ yx qqq , and express the differential cross-section of Ps production by high energy photon in 

the Coulomb field of an atom in variables of momentum transferred: 
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It is well known that in an aligned crystal a cross - section of any coherent process can be written as a 

sum of coherent and incoherent parts [17–18]: 

incohcohcr ddd   , 
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The exponential )exp( 22uq   is the Debye-Waller factor, which takes into account the thermal 

vibrations of the crystal atoms, 2u is the mean-squared deviation of the crystal atom from its 
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equilibrium position,  qI  is an interferential multiplier responsible for appearance of the coherent 

effect and  N  is the number of atoms. We will consider the case when a photon initial momentum is 

parallel to a crystallographic axes – so-called type-B coherent photo-production, and the number of 

atoms in the crystallographic axes is not very large, i.e. the case of a thin crystal. In this case  qI   

should be written in a following form: 
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In the last equation 1xN , 1yN , zN  are the numbers of the crystal atoms in zyx ,,  directions 

respectively, which contribute to coherent process;     ,x x y yg = 2π / d n, g = 2π / d l  ,...3,2,1, ln  

are the components of the reciprocal lattice vector q


 in x  and y directions, zyx ddd ,,   are the lattice 

constant in zyx ,,  directions respectively, and  qS  is the crystal structure factor. 

In the proposed experiment [12] it is planed to measure the Ps yield within small angular cone. To 

compare our results with [12] (based on 1D model) we integrated crd  over Ps emission angles. In 

our case the integration over Ps emission angles is replaced by integration over the transverse 

transferred momentum q . After substitution of Eq. (7) into Eq. (5) and integration over q  we 

arrive at  
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Here 
ln,

q  is the transverse transferred momentum with components: ngq xx   and lgq yy  . As it 

follows from Eq. (3),  
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here R is the atomic screening radius. 

    The summation in Eq. (5) is performed taking into account following condition: 

max

22222 sin  Eqqq yx
, here max is the maximal emission angle of Ps with respect to the 

incident photon momentum. The value of max is determined by experimental setup. The incoherent 

part of the Ps photoproduction cross - section in a crystal is defined in a similar way: 
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3.  Coherent singlet Ps production by relativistic electrons in a crystal 

The triplet and singlet Ps can be produced also by relativistic electron passing through a crystal [10]. 

We restrict our consideration only by singlet Ps coherent production. In this case one can derive the 

cross - section in a framework of the virtual photon method [10, 13]: 
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 ,                                                   ( 9) 

where  n  is the virtual photon spectrum associated with incident relativistic electron 
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 In Eq. (10), 1E  is an initial electron energy,   is the virtual photon energy. The cross-section   cr  

has been studied in Sec. 2. Therefore, further investigation is straightforward. The cross - sections of 

coherent of type B production of Ps by relativistic electrons (lover part) and photon (upper part) as a 

function of created Ps energy are plotted in the figure 1. The energies of the incident electron are 

8551 E  MeV (figure 1a) and 15001 E  MeV (figure 1b). The target is silicon Si <100>. 
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Figure 1. Comparison of Ps cross-sections: coherent photoproduction vs coherent electroproduction in 

a crystal 

 

The cross-section is integrated over emission angles of Ps assuming that the maximal emission 

angle of Ps is max = 5 mrad. The number of atoms in a crystal axis is 1000, the crystal temperature T 

= 300 K. Dotted lines show the cross-sections of Ps production by electrons and photons in an 

amorphous target of equivalent thickness, with the same number of atoms as in a crystal target.    

 

4.  New Experimental Possibilities: SPARC, SAGA-LS & MAMI 

Our calculations showed the appearance of brilliant coherent beaks at definite Ps energies (up to 

several hundreds MeV) in photo and electroproduction of relativistic singlet Ps atoms. The difference 

of these two processes is as follows: if one uses the tagged photon beam, coherent maxima arise at 
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very definite photon energies, since the photon energy is completely converted to Ps energy. If one 

uses the relativistic electron beam, there arises very broad energy spectrum of created Ps atoms, with 

brilliant coherent maxima, since the broad equivalent photon spectrum is converted into broad Ps 

energy spectrum, with many brilliant coherent maximums. Since the intensity of tagged photon beam 

is as usual several orders of magnitude less than that of bremsstrahlung (BS), the use of BS beam 

(standard Schiff spectrum) seems to be more preferable to observe the coherent photoproduction of 

relativistic Ps  atoms. Since the first proposal of experiment [12] at REFER facility (Hiroshima 

University, Japan), the experiments have not been performed up to day due to some reasons. We may 

suggest, that the experimental setup could be the same as suggested in [12], with appropriate scaling of 

the dimensions. In Ref [12] we performed calculations for electron energies E = 150 MeV and 

corresponding two-photon decay length of singlet Ps atoms.   

New possibilities are open up at the modern operating moderate-energy electron accelerators: 

SPARC LNF Frascati (150 MeV), SAGA-LS Japan (255 MeV) and in Mainz at MAMI B (855 MeV) 

and MAMI C (1508 MeV), where the various crystal-assistant experiments (channeling radiation, 

parametric X-radiation, scattering and deflection by crystals) are going on. Why: type B coherent 

effect appears at photon energies up to several hundreds MeV. In the case of electroproduction, there 

appear a wide energy spectrum of created Ps atoms, but the heights of coherent peaks slightly 

increases (as ln E) with increase of electron beam energy. Besides, an increase of the beam energy 

guarantees the staright – line electron trajectory parallel to a crystal axis (neglecting the channeling 

effect). The principal is the use the ultrathin crystal targets, since when creating the Ps atom penetrates 

through the bulk of the crystal and can be broken (the break-up cross-sections are known). The 

complete theory must take into account the simultaneous processes of Ps generation and break-up 

(similar to generation of X-Rays by relativistic particles in a solid target). 

The important figures for experimentalists are of course the counting rates which defines necessary 

beam time. Let us consider the case of MAMI C (electron energy up to 1508 MeV). The electron beam 

has the intensity about 10
13

 electron/s. The intensity of the BS beam can be expected as NBS =10
10

 

photons/s, while the intensity of tagged photon beam is much lower, NT =10
6
 photons/s. 

The schematics of possible experimental setups could be the same as suggested in [12] for coherent 

production of relativistic singlet Ps by BS photon beam and in for coherent Ps production by electron 

beam, respectively.  

Consider the BS spectrum from 1508 MeV electrons, we arrive at the Schiff spectrum of photon 

beam. The convolution of this BS spectrum with singlet Ps photoproduction cross-section from 

Section 2 will result in a specific Ps energy spectrum emitted from the crystal, which in fact is similar 

to Ps spectrum resulting from electroproduction (Section 3). The difference is that it is possible to 

produce singlet Ps with energies up to 1500 MeV using the BS photon spectrum, while 

electroproduction of only the soft part of singlet Ps energy spectrum is accessible. In both cases, the Ps 

energy spectrum has brilliant coherent peaks at the same Ps energies. 

Since the maximal decay length of produced singlet Ps is expected at maximal Ps energy close to 

1500 MeV, 2.51l  m, this value may characterize the maximal longitudinal size of 

experimental setup. For type-B singlet Ps production, as considered here, the crystal axis must be 

precisely aligned with photon/electron beam direction. There are few possible methods to align the 

crystal: to use the orientation dependence of channeling radiation (CR), to measure the orientation 

dependence of Ka-X ray emission, or to measure parametric X-Ray (PXR) yield. In fact, the last 

method can be used both for alignment and electron beam monitoring. Among two first ones, the CR 

measurement seems to be more effective, see, e.g. [19].  

The expected Ps photoproduction rate in vicinity of strongest coherent peak when the incident BS 

photon beam of intensity NBS = 10
10

 photons/s will be used, can be estimated using the cross-section 

given, in figure 1 and the density of atomic strings on the crystal surface, of order of 1/d
2
. By 

integration between Ps energy E = 263 – 266 MeV, we easily obtain the production rate of order of 

350 singlet Ps per hour from Ge crystal target, if the number of atoms which give rise to coherent 
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effect is Nz = 1000. This rate is to be contrasted with that from an amorphous target, which is 

approximately 16 times smaller. 

 In the case of electroproduction, using the cross-sections given in figure 1 our calculation gives the 

production rate of order of 16 ± 20 singlet Ps per hour integrated within energy region E = 260 – 270 

MeV, from <100> Si crystal and much less from amorphous (misaligned) target. In addition, in an 

experiment on Ps coherent electroproduction in a crystal, the long-lived triplet Ps can be produced [7] 

with smaller cross-section. 

5.  Conclusions 

New (besides scattering, deflection and radiation) physics can be explored in the field of interaction of 

high-energy photons (> 100 MeV) and relativistic electrons (positrons) with aligned crystals, i.e. new  

QED effects – production of bound electron-positron pairs – relativistic (moving with relativistic 

velocity) Ps atoms. Coherent effecs in a crystal lead to enhancement of production cross-sections at 

definite energies of emitted Ps, i.e. allowing generation of more intense Ps beams for future Ps physics 

and tests of QED. 
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