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Abstract. In Inertial Confinement Fusion  (ICF), a cold target material is accelerated by a hot 
low density plasma.  In this work, the small amplitude disturbances in ablative Rayleigh-Taylor 
instability in the presence of entropy gradients is studied using a sharp boundary 
approximation, being the inverse entropy-gradient scale length the quantity  /o oK LnS y= ∂ ∂ . 

For simplicity, the target considered here is a finite incompressible slab. Due to ablation, the 
phenomenon of the interactions of two types of modes (Rayleigh mode and entropic mode) is 
shown. This manifest itself in the occurrence of rapid shifts of rate growth (bumping, avoided 
crossings). The entire situation is strongly reminiscent of the well-know “avoided crossings” of 
modes of two coupled oscillators. The growth rate of one  mode (Rayleigh mode) approaches 
that of another one (entropic mode) which is “bumped” to a quite different rate growth, while 
the “bumping” mode settles at roughly at the original rate growth of the bumped mode.  
 
 

1. Introduction 
Anderson et al. [2], obtained a RT (Rayleigh-Taylor) dispersion for a semi-infinite incompressible slab 
relation, using a sharp boundary approximation, which is valid for ~kd 1skL >>   where d is the target 

thickness, and sL  is the entropy gradient scale length. However, this model does not take account the 
thickness slab; therefore, don’t show  the disappearance of the cut-off wave number due to the 
resonant interaction  of the RT mode with the most unstable entropic mode. 
 
The model presented here overcomes this obstacle: a more accurate prediction about the RT mode is 
obtained by assuming a slab with finite thickness. Our model is more complete than the Anderson´s 
model because, determinates all the entropic modes of the slab, showing  the disappearance of the    
cut-off wave number. For simplicity, we are considering a planar target of thickness d (small 
compared with the ablation radius R of the spherical shell), which is moving with a constant 
acceleration g

r
 due the ablation pressure, generated by the heat flux coming from corona. Moreover, 

an entropy gradient S∇
r

, of the same direction and sense that acceleration, exist in the slab. This slab 
is continuously ablating with a mass ablation rate.  

 
For simplicity, the ambient flow speed in the slab is very low, and it is generally useful to neglect it 
taking account the conservation of mass in the ablation front. Thus, the dynamical pressure inside the 
target and in the region of the ablating plasma close to the ablation front is small compared with the 
thermal pressure (the ablating plasma is very subsonic close to the ablation front). Also, the effect of 
the gravity on the ablating fluid can be neglected. In order to solve the initial value problem, we 
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consider single interface (ablation front) which separates an impressible fluid (the slab region) from a 
non-uniform ablating plasma. In ablative RT [1], the growth rate is characterized by the Froude 

number, 2 / ( )r a oF v gL= , where  av  is the ablation velocity, /a av m ρ
•

= , m
•

 is the mass ablation rate, 

and aρ  is the ablation density, being oL  the characteristic thickness of the ablation front. 
 

2. Linear stability analysis and the initial problem value 
Let skw (y,s) denote the Laplace transform with respect to time, and the Fourier transform with 

respect to y of the flow velocity. So, for the y component of the perturbed flow we obtain the equation: 
   

 
2

2sk o sk o
sk2 2

d w (y,s) K d w (y,s) K g
k 1 w (y,s) Q(y,s)

dy dy s

 + − − = γ γ 
 (1) 

   
Where γ  is the ratio of specifics heats and g the slab acceleration, and: 

 

 
2 2

o
2 2 2 2

Kk H(y,0) 1 d H(y,0) 1 d H(y,0)
Q(y,s)

s s dy s dy
= − + +

γ
 (2) 

 

 
d w (y,0)

H(y,0) s w (y,0)
dt

= +  (3) 

                       
 
The boundaries conditions on each side are: 
 

 
2

o sk o
sk sk2 2 2

y d

K d w (y,s) K H(y,0)s 1 dH(y,0)
w (y,s) w (y,s) 0

k g dy k g k g dy
=−

 
+ − − − = γ γ 

 (4) 

  

    
2

o sk o
sk sk2 2 2

K d w (y,s) K H(y,0)s 1 dH(y,0)
w (y,s) w (y,s)
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d y 0

w (y,s) 0
r

=

β+ =  (5) 
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As shown in (Piriz et al.) [3] taking the blowoff density as a density in the blowoff region calculated at 
a distance of the order of  the perturbation wave length  from front the ablation front,  the density jump   

dr ,  for Fr>>1, yields [ ]2/5
4 / (5 )d rr Fβ= , being 2 /akv gβ =  the normalized wave number . Moreover, 

oK dε γ=  is the normalized inverse entropy-gradient scale length; kd  the normalized thickness;  

/as v g  the normalized growth rate. 

2.1. Results and discussion 
These transforms can be inverted explicitly to express the fluid variables as integrals of Green´s 
functions multiplied by initial data. For more simplicity, taking 0.05ε =  and  Fr 6= , we obtain 
numerically the following dispersion relations which are poles of the Green’s function (see figure 1). It 
is explicitly demonstrated  that when the growth rates of different modes are almost identical, strong 
mode coupling occurs (resonant interaction).  The existence of coupling between branches shifts their 
point of intersection into the complex region: an avoided crossing is produced.  
 
The obtained figure shows, in finer detail, the avoided crossings between the Rayleigh Taylor mode 
and entropic modes. It easy to notice that the most dangerous mode is the Rayleigh mode. Moreover, 
the eigenmodes have an accumulation point at 0. 
  
So, when the normalized wave number diminishes, the phenomenon of mode “bumping” [4-5] can be 
observed:  the growth rate of a certain mode approaches that another one which is “bumped” to a quite 
different growth rate, while the “bumping” mode settles at roughly the original growth rate of the 
bumped mode. In this work, when the normalized wave number increases, the first entropic mode 
appears to be the continuation of the Rayleigh mode; the second entropic mode appears to be the 
continuation of the first entropic mode…  
 
It is interesting to obtain the analytical relation dispersion for entropic modes without ablation, which 
is in good agreement with the numerical result shown in figure 1 (except at avoided crossings): 
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 (6) 

 
The entropic modes form an infinity discrete set. As for entropic modes, these are quantized. In 
practice, one is usually interested in the first two or three fastest growing modes.  
 
On the other hand, as kd → ∞ the separation of the entropic eigenvalues goes to zero. Thus, we 
approach a continuous spectrum of entropic eigenvalues. 
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Figure 1. Dimensionless normalized growth rate versus dimensionless normalized wave number for 

0.05ε = , Fr 6= , and the normalized thickness kd=3. Dot-Dashed line corresponds to the analytical 

results; The solid lines corresponds to our model . Rapid shifts of rate growth (bumping, avoided crossings) 
are shown. 

 
 
3. Conclusion 
The effect of avoided crossings in ablative Rayleigh-Taylor instability in the presence of entropy 
gradients is analyzed. So, we observe the mode “bumping” which explain the disappearance of the 
cut-off  wave number  in a slab with finite thickness. 
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