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Abstract. The effect of the magnetic field inclination on the energy and angular distribution of
electrons impinging on the first wall is modeled. It demonstrates the necessity to take into
account the dependences of average energy and incident angle of electrons bombarding the
wall on the magnetic field inclination in calculation of coefficient and the yield of secondary
electron-electron emission.

1. Introduction

The studying of plasma — surface interaction processes is a very important task for realization of the
international project ITER. To determine hydrogen isotopes implantation and reflection, plasma —
facing materials sputtering and secondary emission, as well as to analyze the experimental data in the
plasma sheath it is necessary to determine correctly the inflow and outflow of charged particles at the
surface [1].

The oblique magnetic field has a substantial influence on the electron motion in the sheath. Taking
into account the oblique magnetic field is important for the calculation of the sheath potential drop. It
determines the energy of incident ions and therefore influences the surface sputtering. The electric
field potential distribution depends on the reflection and secondary electron — electron emission, since
these processes change the electron fluxes to and from the wall. The reflection and secondary electron
— electron emission are dependent on parameters of electrons incidence onto the surface, in particular,
the energy and angular distributions of impinging electrons [2]. That’s why our purpose is to estimate
dependences of parameters of electrons incidence onto the surface on the magnetic field inclination
and then reveal the magnetic field influence on the coefficient and the yield of secondary electron
emission.

2. Simulation model

The transport of electrons in the sheath layer is calculated by solving the equation of motion for
electrons in the electric and magnetic fields near the wall. In the modelling it is assumed that electrons
are injected from the boundary of the pre-sheath layer in the XY plane with the velocities V at angles
B with respect to the normal. Emitted electrons have uniform angular distribution and the Maxwell
velocity distribution. The plasma ion and electron temperatures are equal. The magnetic field is
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uniform with a certain inclination angle a with respect to the surface normal H = H(H,,0,H,). The
electric field is perpendicular to the wall E = E(E,,0,0).
The following form of the equation of electron motion is used:
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where 7 =g/m=5.3x10" SGSE/g, ¢=3x10" cm/s, H,=—H cos(a), H.=H sin(a).
To describe the potential distribution in the plasma sheath we use Poisson’s differential equation:
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with boundary condition on the plasma side, which is derived from Bohm criterion:
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and boundary condition on the wall, which is derived using the fact that the ion flux must be balanced
with the electron flux (the expression for the floating potential):
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For solving the Poisson’s equation we use the dimensionless form of equation (2):

j_ax = sy + 2y )

where A = @/, represents the normalized potential and & = x/ry gives the distance from the surface in
units of the Debye length. The equation was solved by Runge—Kutta method of third power.
Then we approximate the equation solution by extent function of the forth order:

AE)=ag+aE+ayE +ayE +ay8 (6)
ap — -5.98
a; =2.08
a,=-0.374
a3 =0.032
a; =—1.044-10"

The approximation of this kind is quite useful for modeling the charged particles behaviour in the
sheath. If you know plasma parameters, you can obtain the potential distribution in the sheath without
solving Poisson’s equation. The solutions of the dimensionless equation (5) by numerical method and
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by approximation function (6) are shown in figure 1. These solutions agree satisfactorily along the
whole plasma sheath length equal to 10 Debye lengths.
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Figure 1. Potential distributions obtained by numerical solution A
of equation (5) and by approximation function A(§) (6).

Then we return to the dimension values of potential and the distance from the surface and obtain
the dependences of potential and electric field in the sheath on the distance from the surface and on the
plasma parameters:
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The values of distance, plasma density and temperature are given in cm, cm™, eV. The potential and
electric field distribution in the sheath can be obtained from these approximation functions without
solving Poisson’s equation.

3. Influence of magnetic field inclination on the energy distribution of electrons reaching the
wall

To determine a minimal initial energy of electrons impinging on the wall the electrons emitted along
the surface normal were considered. These electrons reach the wall faster than other electrons emitted
in XY plane with different velocities. In the absence of the magnetic field or when the magnetic field
inclination equals zero the minimal initial energy of impinging on the wall electrons corresponds to
the potential drop in the sheath layer. For given plasma parameters 7' = 30 eV, n = 10'* cm the
potential drop equals 64.5 eV. However, with the magnetic field inclination the minimal initial energy
increases. In this case the electron motion in the electric and the magnetic field is considered. Electron
drifts along the wall and moves to the wall along the magnetic lines with velocity equal to its velocity
projection on the magnetic field direction V|| = V-cos(a). The condition of reaching the wall is excess
of kinetic electron energy above the potential drop in the sheath layer. Using this condition we derive
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the formula of dependence of minimal initial energy of electrons impinging on the wall on the
magnetic field inclination angle a:

Winin(€V) = e(¢w ~ @o)/cos(a)’. )

The values calculated from this formula (9) and the results of numerical experiment for angles o
less than 60° are in good agreement. For following calculations we consider the electrons from
“Maxwell tail” with energies Wy > Wiin.

Energy distribution of electrons reaching the wall for different cases of the magnetic field
inclination are shown in figure 2. Electrons are injected in the XY plane. The distributions are
normalized to the number of emitted by plasma electrons. The magnetic field strength is H = 5 T.
Electrons have the Maxwell velocity distribution on the boundary of the sheath layer. The electrons
with energies from 64.5 eV to 370 eV were considered. These values correspond to minimal initial
energy of electrons reaching the wall for o = 0° and energy equal to E,,+3c, where ¢ represents the
root-mean-square deviation and E,, gives the average electron energy in Maxwell distribution for 7" =
30 eV. One can see that the quantity of electrons bombarding the wall reduces. The fraction of the
electrons reaching the wall is calculated as an area under the curve. So, for the magnetic field angle
equals 30° the fraction of the electrons reaching the wall is equal to 0.03, and for 60° it is equal to 10™*.

The minimal initial energy of electrons impinging on the wall increases with the magnetic field
inclination. The values of average energy of electrons impinging on the wall for different angles a
were calculated. Figure 3 presents the substantial increasing of the average energy of the electrons
bombarding the first wall with the magnetic field inclination.
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Figure 2. Energy distribution of electrons reaching the wall for
different cases of the magnetic field inclination a. W — energy of
electrons bombarding the wall, Ne — the fraction of the electrons with
the given energy of the number of emitted by plasma electrons
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Figure 3. Dependence of the average energy W of the
electrons bombarding the first wall on the magnetic field
inclination angle o

The average angles of electron incidence for different magnetic field angles are calculated. It is
shown that the average angle of electrons incidence does not depend substantially on the magnetic
field inclination.

4. The influence of the magnetic field inclination on the coefficient and the yield of secondary
electron emission

For each magnetic field inclination angle a the coefficients of secondary electron-electron emission J.,
reflection 1. and the total coefficient of secondary electron emission y. = d. + 1. were calculated from
the empirical formulae [3-5]:
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These coefficients are dependent on the electron energy and angle of incidence, that as was shown are
dependent on the magnetic field inclination angle. Tungsten was considered as a surface material for
calculations. Figure 4 shows the dependences of these coefficients on the magnetic field inclination in
the case of electron injection in XY plane. With the magnetic field inclination the total secondary
electron emission coefficient increases. The coefficient of secondary electron emission gives the main
contribution to the growth of the total coefficient. The reflection coefficient does not substantially
depend on the magnetic field inclination angle. However, with the magnetic field inclination
increasing the number of reaching the wall electrons decreases due to the suppression of the electron
flux to the surface by oblique magnetic field. That is why the yield of secondary electron emission
decreases with the magnetic field inclination increasing despite the increasing of the secondary
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emission coefficient (figure 4). For o = 0° the fraction of the secondary electrons from the number of
emitted by plasma electrons is 6.7x102, for a = 60° the fraction of secondary electrons is 2x10™*.

0 10 20 30 40 50 60
a, deg

Figure 4. Dependences of the coefficients of secondary electron-electron emission 9,
reflection 1. and the total coefficient of secondary electron emission y, on the magnetic
field inclination angle a

5. Conclusions

Thus we study the influence of the magnetic field inclination angle on parameters of electrons
incidence onto the surface in the case of flat electron injection. It was shown that the average energy
of the electrons substantially increases with the magnetic field inclination. Therefore the secondary
electron emission coefficient increases. At the same time due to the suppression of the electron flux to
the surface by oblique magnetic field the secondary electron yield decreases with the magnetic field
inclination increasing despite the increasing of the secondary emission coefficient. The potential
distribution is dependent on the densities of electron inflow and outflow at the wall. That’s why it is
important to take into account the magnetic field in calculation of a self-consistent potential
distribution in the sheath. The self-consistent potential determines the energy of ions bombarding the
wall and therefore it is substantial for the calculation of the wall sputtering. Our further researches will
be aimed at this problem.
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