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Abstract. Space plasmas generally posses distribution functions that exhibit high or super 
thermal energy tails in velocity space which can have different temperatures, a dense cold 
population and a hot population. Moreover, in laboratory plasmas when a laser or electron 
beam is passed through a dense plasma, hot low density electron populations can be generated. 
Presence of such low density electron distributions can act to increase the magnitude of the 
wave damping rate. In this paper we employ non-Maxwellian distribution function such as the 
generalized (r , q) distribution function with two electron temperatures to study the Landau 
damping of electrostatic waves. The results show that the Landau damping increases 
significantly when the percentage of high energy particles increases and with the increase of 
the high energy tail and less pronounced shoulders in the profile of the distribution function. 

1. Introduction 
Electron velocity distribution functions (VDFs) with pronounced superthermal tails and shoulders are 
frequently observed in space plasmas [1-5], which are often modeled by κ-distributions or generalized 
(r , q) distribution functions [3,6-8]. Observations of electron VDFs from solar wind shown significant 
deviations from Maxwellian distribution function and; a dense thermal core and a hot superthermal 
population ‘halo’ can be distinguished in slow solar wind [9-12]; whereas in a fast solar wind a core 
and two hot superthermal populations ‘halo’ and ‘strahl’ are generally observed [13-15]. Such electron 
VDFs cannot be modelled by simple one electron population κ-distributions. 

In laboratory plasmas a small population of electrons possessing much higher energies than the 
original laser beam can be produced [16-18]. Simulation results of electron or laser beam propagation 
in dense plasmas often show electron distributions that are characterized by power-law tails of hot 
electrons superposed on an approximately Maxwellian bulk distribution [19, 20]. The presence of such 
low density electron distributions can act to increase the wave damping rate. In this paper, we studied 
Landau damping with generalized generalized (r, q) distribution function consisting of two 
populations, a hot population and a cold bulk population. The underlined theory can be used to 
understand the physical picture in the laboratory and space plasmas. 

The generalized (r , q) distribution functions is the sum of a fractional ‘F’ hot and a cold bulk 
electron distributions, which is written as  

4th International Workshop & Summer School on Plasma Physics 2010 IOP Publishing
Journal of Physics: Conference Series 516 (2014) 012013 doi:10.1088/1742-6596/516/1/012013

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



 
 
 
 
 
 

)(12

2

2/3

)(12

2

2/3

1
11

)(

1
11

)1(
)(

qr

hh

qr

cc
rq

T
v

D
a

qTD
aCF

T
v

D
a

qTD
aCF

vf

−+

−+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛−
=

π

π

 
where, 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+Γ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−Γ

Γ−
=

+−

)1(2
31

)1(2
3

)()1(3 )1(2/3

rr
q

qqC
r

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

Γ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−Γ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

Γ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−Γ−
=

+−

)1(2
5

)1(2
5

)1(2
3

)1(2
3)1(3 )1/(1

rr
q

rr
qq

D

r

 
Here, Γ  is the usual Gamma function; cT  and hT are the cold and hot electron temperatures and 

Bkma 2/= , where m is the electron mass and Bk  is the Boltzmann constant. The total electron 
density is the sum of the hot and cold electron densities. In the limit 0=r  and 1+= κq , the 
equation (1) reduces to κ-kappa distribution function and in the limiting case when 0=r  and 

∞→q , the equation (1) reduces to the well known Maxwellian distribution function. We note that 
1>q  and 2/5)1( >+ rq  are the conditions which arise from the normalization and definition of 

temperature for the distribution function given in equation (1). 
Figures 1 and 2 show the profiles of generalized (r , q) distribution function for 1% hot population 

at 10 eV added to cold dense population at 1 eV for different values of r and q. Figure 1 is plotted for 
different values of spectral index q when r = 1 (upper panel) and r = 2 (lower panel). From the upper 
panel when r = 1, we note that as the value of q increases the high energy tail decreases. From the 
lower panel when r = 2, we note that as the value of q increases the high energy tail decreases similar 
to the upper panel and shoulders in the profile of the distribution function become more prominent 
with the increase of r. Figure 2 is plotted for different values of spectral index r when q = 2 (upper 
panel) and q = 5 (lower panel). For q = 2 in the upper panel, we note that as r increases the shoulders 
in the profile of distribution function tend to increase and the high energy tail decreases. For q = 5 in 
the lower panel, we note that as r increases the shoulders in the profile of distribution function tend to 
increase similar to the upper panel and the high energy tail decrease as compared to the upper panel. 
Therefore, from the Figures 1 and 2 we can note that when q increases the high energy tail decreases 
and when r increases shoulders in the profile of distribution becomes more prominent. 

2. Dispersion Relation 
We follow the general formulism of kinetic theory to derive the dispersion relation for the electrostatic 
waves with complex frequency ir iωωω +=  and real wave number k . This procedure yields the 
propagation and damping characteristics of electron plasma waves in the limiting case when 

1<<Dk λ , where 

(1) 

(2) 

(3) 
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is the electron Debye length, thv  is the thermal velocity, pω  is the electron plasma frequency, T is the 
electron temperature, hc ,=α  (for cold or hot population) and N is the total number density. The 
general dispersion relation of electrostatic waves is  
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Figure 1. Profiles of generalized (r, q) distribution 
function for different values of q when r = 1 (upper 
panel), r = 2 (lower panel), and F = 0.01, Tc = 1 eV 
and Th = 10 eV. 

Figure 2. Profiles of generalized (r, q) 
distribution function for different values of r 
when q = 2, (upper panel), q = 5 (lower panel), 
and F = 0.01, Tc = 1 eV and Th = 10 eV. 
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Using equation (1) in above equation, we get the general dispersion relation as 
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is the generalized plasma dispersion function [6]. Here αα ωξ thkv/= , αα thvvs /=  and again 

hc ,=α .  
For the Langmuir waves propagating in unmagnetized plasma it is justified to consider the ions as 
immobile giving uniform background that simply maintains the charge neutrality. Therefore, 
neglecting the ion terms in equation (6) and using the appropriate limiting form 1>>αξ  of the 
generalized plasma dispersion function (8), the dispersion relation for hot and cold species can be 
written as 

0)()( =Ω+Ω ir DiD  
where the real and imaginary terms are 
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The solution of 0)( =Ω rrD  gives the real frequency rΩ  of the wave and the solution is then 

given as (for positive root) 
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And the damping rate of the wave is determined by  
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Using equation (13), in evaluating the above equation, gives 
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In the limit 1))/(1(8 22 <<+− hcD TTFFkDK λ , ))/(1(21 22
hcDr TTFFkDK +−+=Ω λ and 

the equation (15) can be further reduced to 
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3. Numerical Solution 
The numerical solution of equation (16) is shown in Figures 3 to 5 for different values of r and q. 
Figure 3 depicts the magnitude of damping rates for 1% hot population at 10 eV added to cold dense 
population at 1 eV in the limit 1<<Dk λ  in the appropriate limiting form 1>>αξ  of the generalized 
plasma dispersion function (8) for different values of q when r is fixed. From Figure 3 upper panel, we 
can see that the damping rate significantly increases when q decreases from 15 to 2 when r = 1. This is 
due to the fact that as the high energy tail increases in the profile of distribution function, the damping 
rate increases for the low values of q which can be seen in Figure 1 (upper panel). From the lower 
panel of Figure 3, we can note that the damping rate increases when q decreases from 15 to 2 when r = 
2 similar to the damping rate as shown in upper panel but the comparison of upper and lower panels 
shows that the damping rate decreases as r increases. This is due to the fact that as r increase, the 
shoulder increases in the profile of the distribution function and high energy tail decreases which 
correspond to the Figure 1 (lower panel). Thus the damping rate decreases when either r or q 
increases. 

Figure 4 depicts the magnitude of damping rates for 1% hot population at 10 eV added to cold 
dense population at 1 eV in the limit 1<<Dk λ  in the appropriate limiting form 1>>αξ  of the 
generalized plasma dispersion function (8) but for different values of r when q is fixed. From Figure 4 
(upper panel), we can see that the damping rate significantly decreases when r increases from 1 to 4 
when q = 2. This is due to the fact that as the shoulders increase in the profile of distribution function 
the high energy tail decreases which can be seen in Figure 2 (upper panel) and hence the damping rate 
decreases when r increases. From the lower panel of Figure 4, we can note that the damping rate 
decreases when r increases from 1 to 4 when q = 5 similar to the damping rate as shown in upper 
panel. But the comparison of upper and lower panels shows that the damping rate decreases 

(14) 

(15) 

(16) 
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significantly as q increases. This is due to the fact that as q increase, the high energy tail decreases in 
the profile of the distribution function which correspond to the Figure 2 (lower panel). For fixed value 
of Dk λ , the comparison of Figure 3 and 4 shows that the damping rate significantly increases when 
either the value of r or q decreases in the range when 15.0<Dk λ .  

Figure 5 shows the magnitude of damping rates for the larger fraction of the hot population (10%) 
at 10 eV added to cold dense population at 1 eV in the same limiting cases as for Figures 3 and 4 for 
different values of r and q. From Figure 5 upper panel, we can note that the damping rate enhances 
significantly when the percentage of hot population increases as compared to the lower percentage of 
hot population Figure 3 (upper panel) for r = 1. Similarly from Figure 5 lower panel, we can note that 
the damping rate enhances significantly when the percentage of hot population increases as compared 
to the lower percentage of hot population Figure 3 (lower panel) for q = 2. Therefore, for the larger 

Figure 3. Magnitude of Landau damping for 
different values of q when r = 1 (upper panel), r 
= 2 (lower panel), and for F = 0.01, Tc = 1 eV 
and Th = 10 eV. 

Figure 4.Magnitude of Landau damping for 
different values of r when q = 2 (upper panel), q = 
5 (lower panel), and for F = 0.01, Tc = 1 eV and 
Th = 10 eV. 
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fraction of the hot population (10%), the Landau damping enhances significantly for all values of r and 
q and in the range 4.00.0 << Dk λ . 

 
Figure 5. Magnitude of Landau damping when the hot 
population is 10% of the bulk population, i.e. F = 0.1, for 
different values of q when r = 1 (upper panel), and for 
different values of r when q = 2 (lower panel). Other 
parameters are the same as that of Figures 3 and 4. 

4. Conclusion 
In this paper, the effect of enhanced Landau damping of electrostatic waves is studied in the 
presence of low density superthermal electron distribution when added to dense bulk 
population of cold plasmas. We followed the standard kinetic approach to evaluate the 
damping rate of Langmuir waves modelled generalized (r, q) distribution function. We have 
shown that Landau damping increases as the q decreases from 15 to 2 or r decreases from 4 to 
1 when we take hot population as the 1% of the bulk cold population. The same trend has also 
been observed when we consider 10% hot population. But when we consider the increased hot 
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population, the Landau damping significantly increases as compared to the case when we take 
lower percentage of hot population. 
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