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Abstract. A great number of problem-oriented software packages (e.g., DAPHNE, ESRAY, 
GYROSIM, just to name a few) are used for computer-aided design (CAD) and optimization of 
high-power gyrotrons for fusion research (most notably for ECRH and ECCD). In them, 
adequate self-consistent physical models formulated in a two-dimensional space (2D) are 
implemented. Most of the problems encountered in recent years in the development of 
megawatt-class gyrotrons, however, can be attributed to physical factors and phenomena that 
are both non-stationary (for instance various electron beam instabilities, dynamics of the 
trapped particles) and inherently three-dimensional by nature (e.g., non-uniformity of the 
emission, misalignment of the electrodes and magnetic coils, etc.). In order to address these 
problems and to take into account most of the physical factors that have so far been neglected, 
a work on the development of a novel problem-oriented software package called GYREOSS 
(which stands for Gyrotron Electron-Optical System Simulation) was initiated recently. Since 
then, GYREOSS has evolved into a test bed for experimenting with different numerical 
methods, algorithms, and programming techniques for ray tracing (trajectory analysis) and 
particle-in-cell (PIC) simulations.  In this paper, we outline the current status of GYREOSS 
and present both its physical model formulated in 2D and 3D and its program realization. We 
illustrate the capabilities of the latest version of the code, which includes a novel 3D field 
solver and an efficient relativistic particle pusher. Finally, we present an outlook for a further 
development of GYREOSS. 

1. Introduction 
The gyrotrons are fast-wave vacuum tubes operating on a physical principle known as electron-
cyclotron maser instability, which is caused by the dependence of the relativistic cyclotron frequency 
of accelerated electrons gyrating in a strong magnetic field on their energy. The interaction of a helical 
beam in which most of the kinetic energy of its electrons is associated with their rotational motion 
(gyro-motion) with the transverse components of the electric field of an electromagnetic wave having 
a phase velocity greater than the speed of light in vacuum takes place in a resonant structure (cavity 
resonator) with characteristic dimensions that are much larger than the wavelength of the radiation. 
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Such operational principle, which lacks the disadvantages and the limitations of the conventional 
(slow-wave) vacuum tubes makes the gyrotrons the most powerful sources of coherent  radiation at 
millimetre and sub-millimetre wavelengths (sub-THz and THz frequencies) in a CW mode. Definitely, 
among numerous applications of gyrotrons in the physical research and the technologies, the most 
prominent one is their use as sources of high-power radiation for electron cyclotron resonant heating 
(ECRH) and electron cyclotron current drive (ECCD) of magnetically confined plasmas in fusion 
devices (e.g., tokamaks and stellarators). The current state-of-the-art of these devices is well 
represented by a series of megawatt-class tubes in the frequency range 140 − 170 GHz [1]. For their 
computer-aided design (CAD), optimization and analysis, many problem-oriented software packages 
are available that are specialized to one or another subsystem of the tube, e.g., EOS (DAPHNE, 
ESRAR, GUN-MIG/CUSP), electrodynamical system (CAVITY, SELFT) or the whole device 
(GYROSIM). In all of them, adequate physical models formulated in a two−dimensional (2D) space 
are realized. Many physical factors and phenomena (for instance non-uniformity of the emission, 
misalignment of the electrodes and magnetic coils, various instabilities, etc.), however, are inherently 
three-dimensional (3D) and non-stationary by nature and are therefore neglected in the 2D 
simulations. In order to take them into account, the development of GYREOSS package (which stands 
for Gyrotron Electron-Optical System Simulation) was initiated recently. It follows a concept 
presented elsewhere [2, 3] and is based on a physical model formulated in both 2D and 3D and is 
being developed as a problem-oriented platform for particle in cell (PIC) simulations and trajectory 
analysis (ray tracing). In this paper we present both the current status of GYREOSS and an outlook for 
its further development. 
 
2. Novel field solver and relativistic particle pusher of the GYREOSS package 
Starting from an initial version of the package [4], which was based on the gmsh (a 3D mesh generator 
with a build-in CAD system with pre-, post-processing, and visualization capabilities [5]) and GetDP 
(a General Environment for Treatment of Discrete Problems [6]) in recent years GYREOSS has 
evolved into a test bed for experimenting with different numerical methods, algorithms, and 
programming techniques for ray tracing (trajectory analysis) and particle-in-cell (PIC) simulations. Its 
current version is implemented as a library of scripts using FreeFEM++ [7] and its integrated 
development environment (IDE) FreeFEM++-cs. The most characteristic for the current status of 
GYREOSS are two of its recently developed computational modules, namely a novel 3D (2D) field 
solver and a relativistic particle pusher. They will be presented briefly below. 

The distribution of the electrostatic potential u in the electron-optical system (EOS) is governed by 
the Poisson’s equation and the electric field u∇= -E is a gradient of that potential. More specifically, 
we consider a bounded computational domain dR⊂Ω  of dimension 3=d  (3D) or 2=d  (2D) with 
a boundary 

N
i i1= Ω∂=Ω∂ , which is composed of N  surfaces iΩ∂  in the case of 3D or N contours in 

2D. The electrostatic potential is a solution of the following boundary value problem for the Poisson equation  
fu −=∆  in Ω , (1) 

with mixed boundary conditions, i.e., Dirichlet boundary conditions (DBCs) on the electrodes 
(designated by the indices l =1,…, L) 

lUu =  on DlΩ∂ , (2) 
and Neumann boundary conditions (NBCs) 

0=
∂
∂
n
u  on NmΩ∂ , (3) 

on the appropriately specified closing boundaries (e.g., symmetry planes), designated by the indices m 
= 1,…, M. The regions with Dirichlet DΩ∂ and Neumann NΩ∂ boundary conditions do not overlap, 

i.e., ND Ω∂Ω∂=Ω∂   and =Ω∂Ω∂ ND  ∅, where 
L

l DlD 1=
Ω∂=Ω∂ , 

M

m DmN 1=
Ω∂=Ω∂ and 

L+M = N.  It is well known that with such mixed boundary conditions the Poisson equation has a 
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unique solution. Here the right-hand side of the Poisson equation 0/ερ=f  is defined by the space 
charge distribution ρ  and the permittivity of vacuum ε0. 

For the solution of the above boundary value problem the finite element method (FEM) and the 
tools of the FreeFEM++ software package are used. The corresponding weak variation form of the 
Poisson equation reads: Find 1Hu∈  such that 

∫ ∫
Ω Ω

=∇∇ ττ fuuu. , (4) 

for all 1
0Hu ∈τ , where 1H  is the Hilbert space and 1

0H  consists of continuously differentiable 
functions τu  in Ω and vanishing on the boundary. Here and below we use the traditional notations for 

the Sobolev function spaces )(ΩmH  that consist of all functions on Ω  that are square integrable 
together with their derivatives up to the order m , i.e. 









≤≤Ω∈
∂

Ω∈=Ω mjL
dx

uLuH j

j
m 1),(:)()( 22 , (5) 

where )(2 ΩL denotes the space of square integrable functions on Ω . In this paper, for convenience we 
denote both the unknown (trail) functions and the test functions by one and the same letter but mark 
the latter functions by a subscriptτ . 

The above formulation of the boundary value problem of the field solver is implemented using the 
finite elements and the tools provided by the FreeFEM++ [7] package for solving partial differential 
equations by the FEM. Two pieces of code with its program realization for the 2D and 3D cases 
respectively are shown in figure 1. 

 
 

Figure 1. Excerpts from the codes of the field solvers in 2D (left) and 3D (right). 
 

The computational domain Ω  is discretized by a mesh hΤ  consisting of cells K , which are 
triangles in 2D and tetrahedrons in 3D. Both externally generated meshes (using gmsh and TetGen) as 
in the previous version of GYREOSS and grids generated by the embedded mesh tools of 
FreeFEM++. 

An example which shows the surface meshes that represent the electrodes of the gun and the 
closing boundaries of the computational domain as well as the 3D tetrahedral mesh used in the 
simulations of a coaxial EOS are presented in figure 2. 
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Netgen optimized mesh by gmsh

 

Figure 2. Surface meshes forming the boundary of the computational domain (left) and the 3D 
tetrahedral mesh (right) of a coaxial EOS for a 2 MW/170 GHz gyrotron. 
 

From a physical point of view, the DBC correspond to the potentials applied to the electrodes that 
form the EOS and are also known as geometric boundary conditions. The electrodes are considered as 
perfectly conducting equipotential surfaces, where the tangential component of the electric field 
vanishes. The NBC are usually specified on the closing contours (surfaces) between the electrodes, 

and the condition 0=
∂
∂
n
u implies simply that the equipotential lines cross these boundaries at a right 

angle. It should be noted that the physical boundary conditions (DBCs or NBCs) are treaded by the 
finite element method as either natural or essential. For example, the DBCs are essential boundary 
conditions (EBCs) while the NBCs are natural boundary conditions. The main difference between 
them is the following. The natural BCs are already included in the integration in the finite element 
equations and there is no need to impose them additionally. On the other hand, although the EBCs are 
satisfied automatically in the finite-element formulation, they still need to be implemented (using one 
or another method, e.g., direct application; Lagrangian multiplier or Penalty Method). In another 
words, the essential boundary conditions are built into the solution space, while the natural boundary 
conditions are built into the weak form. 

The particle in cell (PIC) method implies representing the electron beam by an ensemble of N 
macro particles and tracing their motion in a self-consistent electromagnetic field whose electric E  
and magnetic iB   components include not only the applied external fields but the self-fields of the 
space charge as well [8, 9]. According to the PIC algorithm, this is being performed integrating 
numerically the following relativistic Newton–Lorentz equations of motion 









×+= i

i

i
i

i
m
q

t
BwEw

γ0d
d  , iiii

i
t

vwvr γ== ,
d
d  (6) 

for all electrons (i = 1, 2,…, N), where 0/ mq is the charge to mass ratio of an electron at rest, Ei, Bi 
being the electric and the magnetic field at the current particle position ri, and the relativistic Lorentz 
factor of the i-th particle is defined by its velocity vi and the speed of light in vacuum c  as 

2

2
2/1

2

2
1]1[

cc
wv

+=−= −γ . Among the numerous explicit and implicit numerical methods for 

integration of the equations of motion (e.g., schemes of Boris, Boris–Bunneman, Tajima, 
Runge−Kutta method, Verlet’s method, and predictor−corrector method) evaluating all important 
factors (accuracy, stability, CPU time etc.) finally we have selected the leapfrog method of the 
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relativistic Boris−Bunneman scheme. The leap-frog method [8, 9] reduces the relativistic equations of 
motion (6) to the following time–centered implicit relations  


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in

i
n

i
n

i
t γ

wvrr , (7) 

where the advancement in time tnt n ∆= is performed with a step t∆ . Integration of (7) is performed 
following the classical 3-step method by Boris [10], which involves a complete separation of the fields 

Ei, Bi (introducing two intermediate velocities and using the scalings EE
m

tq∆
← , BB

m
tq∆

← ), 

followed by a half-step electrical acceleration ( Eww +← ), then a Larmor rotation (gyromotion) of 

the velocity vector ( BBww
B

w ××+
+

← )(
1

2
2 ) and, finally, another half-step acceleration 

( Eww +← ). This stepping scheme introduces an error which is second order with respect to the 
ratio of the time step to the cyclotron period. By satisfying the condition 35.0c <∆tω ( cω being the 
electron cyclotron frequency) the relative error of the rotation angle of the Boris scheme is kept to 
values less than 1%. This stepping technique has two important physical, namely it is time-reversible 
and energy-conserving. Since the leap-frog method is not self-starting initially a half step backwards 
from the initial conditions for the particles is performed in order to kickstart the process. The method 
described above is coded in the novel relativistic particle pusher (aka mover), which is used to update 
(advance) the positions and the velocities of the traced particles on each time step of the PIC algorithm 
as well as for calculation of the electron trajectories if the code is used as a ray-tracing tool for 
trajectory (electron–optical) analysis. As an example, figure 3 shows the electron trajectories in the 
coaxial gyrotron, which was presented in figure 2. 
 

 
 

Figure 3. Electron trajectories in the coaxial gyrotron shown in figure 2. 
 
3. Conclusions and outlook 
The problem-oriented software package GYREOSS is being developed as a versatile tool for 
numerical studies and CAD of EOS of gyrotrons. Its development follows a well-defined concept 
formulated earlier, which sets the following guiding requirements to the code: (i) based on adequate 
(self-consistent) physical models; (ii) utilizing state-of-the-art computational platforms, numerical 
libraries and programing techniques; (iii) extensibility; (iv) portability; (v) efficiency. This paper 
presents a novel electrostatic field solver of the GYREOSS software package. It is parameterized in 
such a way as to provide convenient data structures of the electromagnetic fields at the current particle 
positions in both 2D and 3D which are used by the newly developed second-order relativistic particle 
pusher in which the leap-frog method and the Boris−Buneman scheme are implemented. Although the 
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current version is sequential, both the data structures and the algorithms are coded in a way that would 
allow an easy parallelization of the code in the future. Currently we are studying and comparing 
various schemes for allocation of the currents and charges to the computational grid. The aim is to 
develop efficient modules that not only realize the above mentioned step (“scattering”) of the PIC 
algorithm but also take full advantage of both the advanced interpolator and the mesh adaptation 
(adaptive mesh refinement) provided by FreeFEM++.  
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