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Abstract. Hydroxyapatite Ca10(PO4)6(OH)2 (HAp) is a material considered to be used to form 
structural matrices in the mineral phase of bone, dentin and enamel. HAp ceramic materials 
and coatings are widely applied in medicine and dentistry because of their ability to increase 
the tissue response to the implant surface and promote bone ingrowth and osseoconduction 
processes. The deposition conditions affect considerably the structure and bio-functionality of 
the HAp coatings. We focused our research on developing deposition methods allowing a 
precise control of the structure and stoichiometric composition of HAp thin films. We found 
that the use of O2 as a reactive gas improves the quality of the sputtered hydroxyapatite 
coatings by resulting in the formation of films of better stoichiometry with a fine crystalline 
structure. 

1. Introduction 
The preparation of biomaterials for bone substitution, gene delivery and tissue engineering scaffolds 
applications has been the object of extensive research aimed at fulfilling the clinical requirements, 
namely, biocompatibility, biodegradability, mechanical and tribological stability [1]. Advances have 
been recently made in developing nano-crystalline hydroxyapatite (Ca10(PO4)6(OH)2 HAp) ceramics 
for orthopedic and dental applications. Orthopedic implants made of HAp and HAp-coated metal 
prostheses bond readily to bone and other body tissues without rejection or inflammatory reactions   
[2-6]. In this respect, the deposition conditions influence strongly the HAp coatings’ structure, 
composition and capability of promoting bone regeneration [7-9]. Parameters, such as initial target 
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stoichiometry [10], gas pressure, discharge power, annealing and immersion treatment conditions [11], 
significantly affect the characteristics of the coatings [12]. The present study’s aim was to analyze the 
effect of the different deposition conditions on the properties of hydroxyapatite ceramic coatings. 
 
2. Materials and methods 
Hydroxyapatite Ca10(PO4)6(OH)2 films were prepared by ion-beam sputtering of a ceramic HAp target 
in a vacuum chamber equipped with a gridless closed-drift ion-beam source allowing the use of 
different reactive working gases, such as O2, and N2 for etching, pre-cleaning and direct deposition 
processes [13]. The substrates were made of glass and a titanium alloy (Ti6Al4V). 

The operating positive anode voltage was 2,0 − 4,0 kV. The working gas pressure (mixture of O2 
and Ar) was in the range (1 − 6)×10-2 Pa. The ion current was in the range 130 − 150 mA, the ion 
current density on the target being 10 mA/cm2. The estimated coatings thickness was about 1.5 μm. 

Figure 1 presents the current-voltage characteristics of the ion source at various working gas 
pressures. At pressures (5 − 6)×10-2Pa, a transition takes place from the discharge acceleration mode 
(curves’ linear part) to the magnetron regime with stabilization of the current-voltage characteristics at 
current values above 100 mА. A pressure of approximately 5×10-2 Pa ensured optimal deposition 
conditions. 

The structure and composition of 
hydroxyapatite Ca10(PO4)6(OH)2 films 
deposited by sputtering in inert Ar and reactive 
O2 gases were studied by means of XRD and 
XPS. X-ray diffraction profiles of HAp were 
observed on a DRON-3 diffraction device with 
filtered Cu-Ku radiation. X-ray photoelectron 
spectroscopy was carried out using an 
ESCALAB MkII (VG Scientific) electron 
spectrometer at a base pressure in the chamber 
5×10-8 Pa (1×10-6 P during the measurements) 
using an Al K-alpha X-ray source (excitation 
energy hν = 1486,6 eV). The coating surface 
structure and morphology was observed by 
AFM (Quesant Instrument Corporation, USA) 
and SEM (JEM 2100). 
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Figure 1. Current-voltage characteristics of the ion 
source at various working gas pressures. Solenoid 
current Is = 2 А; pressure: 1 – р = 4×10-2 Pa,           
2 – р = 6,5×10-2 Pa, 3 − р = 8×10-2 Pa. 

 
3. Results and discussion 
The XRD patterns of the target’s composition and that of as-deposited and annealed HAp coatings are 
presented in figure 2. The target’s diffraction peaks are close to the standard HAp peak positions. The 
as-deposited coatings have an amorphous structure. Hydroxyapatite crystalline phases with the major 
HAp peaks corresponding to (002), (211), (300), (202), (310), (222), (213) reflections were observed 
after the as-deposited films were annealed at 600 oC and then immersed in deionized water for 
hydroxyl group formation [11]. We proceeded with a structural analysis of as-deposited 
hydroxyapatite Ca10(PO4)6(OH)2 films produced by sputtering in an inert (Ar) and a reactive           
(O2) gas. We also conducted an XPS survey scan of HAp coatings and a narrow scan of the           
Ca2p, P2p, O1s peaks. 

The survey spectrum shows the peaks of core-levels binding energy at about 438,7 eV related to 
Ca2s, 347,5 eV related to Ca2p, and 133,5 eV corresponding to P2p. The O1s peak was observed at 
531,5 eV. The peak observed at about 284,6 eV is assigned to C1s and is due to surface contamination 
(figure 3). High-resolution XPS spectra of Ca (2p1/2), (2p3/2) and P (2p3/2) peaks are presented in figure 4. 
Table 1 summarizes the differences in the atomic concentrations in HAp coatings deposited in an inert 
(Ar) and a reactive (O2) gas. 
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Figure 2. XRD patterns of the target’s 
composition and that of as-deposited and 
annealed HAp coatings. a − annealed HAp 
(O2) coating, b − annealed HAp (Ar) coating, 
c − as-deposited, d − target composition. 
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Figure 3. XPS survey scan of HAp coatings 
deposited in reactive O2 gas. 
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Figure 4. High-resolution XPS spectra of Ca (2p1/2), (2p3/2) and P (2p3/2) peaks of HAp coatings 
deposited in reactive O2 gas. 

 
Table 1. Atomic concentrations of HAp coatings 
deposited in Ar and in O2. 

 

 
HAp samples 

Peak area results (atomic 
concentration) 

 

Ca/P ratio 
P2p O1s Ca2p F1s 

 

HAp deposited in O2  14.3 59.9 24.7 1.1 1.73 
HAp deposited in Ar  13.2 58.5 26.9 1.4 2.04 

 
The atomic ratio percentage Ca/P was 1.73 for deposition in reactive O2 and 2.04 for deposition in 

inert Ar. In the standard hydroxyapatite Ca10(PO4)6(OH)2 composition, the calcium/phosphate ratio is 
1.67. The XPS data showed a higher Ca/P ratio, which is the result of a calcium-enriched surface. The 
of Ca/P ratio deviation from the stoichiometric value may be due to a surface layer with a composition 
differing from that of the bulk material. A difference in the surface and  bulk  stoichiometric  ratios  has  
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also been reported in [12, 14, 15]. 

The SEM micrographs of HAp samples showed a 
well defined platelet morphology. A uniform surface 
structure was observed in the case of HAp coatings 
deposited in the reactive O2 gas. The difference in the 
surface structure of HAp films deposited by sputtering 
in inert Ar and in reactive O2 was revealed by AFM 
(figure 5). Thus, the estimated average, Sa and mean-
square Sq roughness parameters were Sa = 0,46 nm and 
Sq = 0.73 nm for HAp coatings deposited in O2; and Sa = 1.61 
nm, Sq = 2.18 nm for HAp coatings deposited in Ar. 
 
4. Conclusions 
The results demonstrate the strong effect of the 
sputtering process conditions on the structural and 
surface properties of the coating produced, so that 
optimal technological deposition conditions can be 
recommended. The structure and composition of 
hydroxyapatite films deposited by sputtering in inert Ar 
and in reactive O2 gases were investigated by XPS, 
XRD, SEM and AFM. The atomic ratio percentage 
Ca/P was 1.73 for reactive O2 gas deposition and 2.04 
for inert Ar gas deposition. The HAp films formed in a 
reactive ambient are of better quality as their surface is  

 

 

 
Figure 5. Surface structure of HAp 
films deposited by sputtering in inert 
Ar (a) and in reactive O2 (b) gases. 

smoother and their composition is closer to the stoichiometric one. Varying the deposition conditions 
allows one to improve the quality of the sputtered hydroxyapatite Ca10(PO4)6(OH)2 coatings by 
forming films of better stoichiometric composition with a fine crystalline structure. 
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