
An integrated infrastructure in support of software

development

S Antonelli1, C Aiftimiei2, M Bencivenni1, C Bisegni3, L Chiarelli4, D
De Girolamo1, F Giacomini1, S Longo1, M Manzali1, R Veraldi1 and
S Zani1

1 INFN-CNAF, Bologna, Italy
2 INFN, Padova, Italy
3 INFN-LNF, Frascati, Italy
4 GARR, Roma, Italy

E-mail: stefano.antonelli@cnaf.infn.it, cristina.aiftimiei@pd.infn.it,

marco.bencivenni@cnaf.infn.it, claudio.bisegni@lnf.infn.it,

lorenzo.chiarelli@garr.it, donato.degirolamo@cnaf.infn.it,

francesco.giacomini@cnaf.infn.it, stefano.longo@cnaf.infn.it,

matteo.manzali@cnaf.infn.it, riccardo.veraldi@cnaf.infn.it,

stefano.zani@cnaf.infn.it

Abstract. This paper describes the design and the current state of implementation of an
infrastructure made available to software developers within the Italian National Institute for
Nuclear Physics (INFN) to support and facilitate their daily activity. The infrastructure
integrates several tools, each providing a well-identified function: project management, version
control system, continuous integration, dynamic provisioning of virtual machines, efficiency
improvement, knowledge base. When applicable, access to the services is based on the INFN-
wide Authentication and Authorization Infrastructure. The system is being installed and
progressively made available to INFN users belonging to tens of sites and laboratories and
will represent a solid foundation for the software development efforts of the many experiments
and projects that see the involvement of the Institute. The infrastructure will be beneficial
especially for small- and medium-size collaborations, which often cannot afford the resources,
in particular in terms of know-how, needed to set up such services.

1. Introduction
The success of a scientific endeavor depends, often significantly, on the ability to collect and
later process large amounts of data in an efficient and effective way. Despite the enormous
technological progress in areas such as electronics, networking and storage, the cost of the
computing factor remains high. Moreover the limits reached by some historical directions of
hardware development, such as the saturation of the CPU clock speed with the consequent
strong shift towards hardware parallelization, has made the role of software more and more
important.

This paper describes the design and the current status of implementation of an integrated
infrastructure of services aimed at supporting and facilitating the daily activities of INFN
researchers and technologists who work with software in roles as diverse as developers,

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 062018 doi:10.1088/1742-6596/513/6/062018

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



maintainers, reviewers, supporters or project managers. The activity is carried out as part
of the ISSS project [1], with the purpose to augment the existing INFN-wide IT services.

Once completed, the infrastructure will represent a one-stop shop offering a variety of tools
already configured to support established best practices, so that the quality of the produced
software and of related services (notably support) could be continuously improved at a decreasing
cost. The generic term quality refers to characteristics such as low presence of defects, runtime
performance efficiency, maintainability, easy portability to new platforms. Similarly, the generic
term cost covers many aspects, such as time devoted to development, test, support and
maintenance, money spent in hardware resources and electrical power, low service reliability.

The system is being installed and progressively made available to users belonging to
tens of INFN sites and laboratories and will represent a solid foundation for the software
development efforts of the many experiments and projects that see the involvement of INFN.
The infrastructure will be beneficial especially for small- and medium-size collaborations, which
often cannot afford the resources, in particular in terms of know-how, needed to set up such
services.

This paper is organized as follows: section 2 lists the functions that have been considered in
the initial design of the infrastructure; section 3 describes the status of the implementation
of those functions at the time of writing; section 4 describes the foreseen evolution of the
infrastructure both for the existing tools and for the introduction of new services that have
been identified in the meantime; in section 5 we present some concluding remarks.

2. Functions
The infrastructure is designed to comprise several services, each providing a function. The
functions so far identified include: project management, version control system, continuous
integration, availability of development platforms, efficiency improvement, knowledge base.

When applicable, access to the services is based on the INFN-wide Authentication and
Authorization Infrastructure (AAI). For web applications the AAI offers a SAML-based Identity
Provider (IdP) that allows a user to authenticate via either a personal X.509 certificate or a
username/password pair. The AAI is available also to non-INFN users via a simple registration
procedure, permitting also to projects not entirely formed by INFN users to access this
infrastructure.

2.1. Project management
Any software project that goes beyond a limited-duration single-person exercise would benefit
from a project management system. The more complex the project is (more developers, more
users, larger code base), the larger the benefit. The main functionality offered by a project
management system is the possibility to track a variety of issues, such as: requests of support
submitted by users; requests to apply changes to the code (be they due to defects or additional
improvements); internal tasks to manage releases and reviews. Additional useful features include
support for reporting project metrics and statistics and for linking code change requests to actual
changes in the code base. This latter aspect, if properly applied, enables the full control of the
whole chain from user requirements to software package deployment.

2.2. Version control
A Version Control System (VCS) allows to store permanently any change applied to a code base
(source code, tests, documentation, build and packaging instructions, etc.) along with metadata
to keep track of the history of the changes. Versioning information is essential in a variety of
situations: to keep alive and actively maintain multiple releases of the same software component;
to undo changes that have introduced defects; to properly support a development model that
allows multiple people to further develop the same software component in parallel.

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 062018 doi:10.1088/1742-6596/513/6/062018

2



2.3. Continuous integration
In order for the developers to keep their confidence high that changes applied to the code base,
by themselves or by their peers, do not cause regressions, it is a recommended practice to verify
continuously (e.g. periodically or even at every change) that all changes introduced in the
software at least build correctly and pass basic tests. If portability is a relevant characteristic of
the software, the job executing the build and the tests should run on multiple platforms. If the
software provides some network services, the tests may require the deployment of the software
on multiple nodes and their co-ordination during the test run.

As an additional benefit, the automatic build and test phases are an excellent occasion to
run other quality checks. Several static and dynamic analysis tools exist that are able to expose
actual or potential defects in the code before they reach production.

2.4. Availability of development platforms
The software development activity, especially for software that has to be available on multiple
platforms, often requires the availability of multiple nodes: for actual coding, for building, for
deployment and testing. To allow flexibility in the allocation of such resources from the point
of view of both the user and the provider, a solution based on a system capable of instantiating
virtual machines on demand stands as an obvious choice.

2.5. Efficiency improvement
Given the magnitude of the computing needs of a typical current experiment, even a slight
improvement in the efficiency of the software brings significant savings in terms of resources, be
they processors, memory, storage, network or, more and more relevant, electrical power.

Moreover the current trend towards increasing hardware parallelism, either as multi-core
CPUs or as highly-parallel accelerators like GPUs or MICs, requires that the full exploitation
of the potentially available performance be addressed at application level, with possibly large
modifications to existing code to make it more akin to parallel execution. Multiple sources of
parallelism and optimization are exploitable: overall computing model, algorithms and data
structures, programming languages, compilation options, implementation techniques.

In most, if not all, of these cases it is of paramount importance to be able to profile the
program execution with adequate tools so that the changes are guided by objective measurements
and not by guesses.

2.6. Knowledge base
Even the availability of the best tools on the market would not be sufficient to achieve the
stated goal of producing good-quality software. More important is the sharing of knowledge and
experience already acquired by others. Different means are employable to spread knowledge,
such as training courses, discussion forums, consultancy by experts, collaborative platforms.

3. Current status
At the core of the implementation of many of the functions described in the previous section
lies a virtualization infrastructure based on a number of KVM [2] hypervisors sitting inside a
private, non-routed, B-class network, accessing external resources via NAT. The network services
(DHCP, DNS, NTP, NAT, etc.) are provided via pfSense [3]. The storage needed by the virtual
machines is provided with FreeNAS [4], configured with the ZFS file system, which guarantees
both performance and resilience to disk failures. The orchestration of the infrastructure is based
on oVirt [5], the community edition of Red Hat Enterprise Virtualization Manager, offering
a flexible set of instantiation options. The abstraction layer of the whole system is based on
δ-Cloud [6], which offers both an EC2 [7] and a proprietary interface. The overall layout is
shown in figure 1.

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 062018 doi:10.1088/1742-6596/513/6/062018

3



Figure 1. The overall layout of the underlying virtualized infrastructure.

For project management we have chosen Atlassian JIRA [8], a widely-used tool that offers
excellent support for large and complex development projects involving many users. It covers
many aspects of the software project lifecycle, including: interaction with users for requirements
and support; organization of issues, tasks and activities; integration with code repositories;
reporting. Authentication to the service is based on the Single Sign-on made available by the
INFN-wide AAI.

Jenkins [9] provides the framework for continuous integration and represents the foundation
for any process that aims at producing high-quality software components in a reproducible
way, as shown for example in figure 2. A few slaves are attached to the system, covering the
most common Linux distributions for 32- and 64-bit platforms. Authentication to the service
is based on the INFN-wide AAI. Since the service is accessible by a potentially large number
of users, belonging to many distinct communities, particular attention has been devoted to the
configuration of the system so that jobs run by different users are well isolated from one another.

Figure 2. A typical software process using a continuous integration approach.

Subversion [10] has been chosen as version control system to cover existing needs. The
authentication to the system is based on SSH public keys. Beside Subversion, solutions for git [11]
and mercurial [12] repositories hosted by third-parties, such as GitHub [13] and Bitbucket [14],
are encouraged and well supported by the other tools, notably JIRA and Jenkins.

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 062018 doi:10.1088/1742-6596/513/6/062018

4



4. Future evolution
The future evolution of the infrastructure depends mainly on the needs and priorities expressed
by the community of users.

One immediate action is the integration of static analysis tools into Jenkins.
Following that, the underlying virtualization infrastructure will be opened to any user, so

that anyone can demand a host for personal use, e.g. for development or testing. There are no
significant technical issues to make this happen; however the security implications have to be
better understood and addressed, also from the legal point of view.

Another already identified need is the availability of a collaborative platform, which will
be addressed shortly, firstly with a chat service and later with a Q&A system. The latter in
particular would greatly help share the large accumulated knowledge on computing matters in
the community.

In the longer term we plan to investigate the possibility to submit the continuous integration
jobs directly on the INFN Tier-1 hosted at CNAF, leveraging the sharing facilities natively
present in a modern batch system.

In parallel, the availability of the service needs to be properly promoted in an environment—
INFN—that is very distributed geographically and where communication is not always easy.

5. Conclusions
The success of a scientific experiment relies more and more on sound computing practices,
notably in the development of scientific software.

The infrastructure presented in this paper aims at providing a one-stop shop for software
developers, especially members of small- and medium-size experiments, where they can find
state-of-the-art tools and services that help them deliver software of increasing quality at
reducing costs and on time, through the adoption of established best practices.

References
[1] The ISSS Project Infrastructure in Support of Software Development https://web.infn.it/isss
[2] KVM Kernel Based Virtual Machine http://www.linux-kvm.org

[3] pfSense http://www.pfsense.org/

[4] FreeNAS http://www.freenas.org/

[5] oVirt http://www.ovirt.org/

[6] δ-Cloud https://deltacloud.apache.org/

[7] Amazon Elastic Compute Cloud https://aws.amazon.com/ec2/

[8] Atlassian JIRA https://www.atlassian.com/software/jira

[9] Jenkins https://jenkins-ci.org/

[10] Subversion https://subversion.apache.org/

[11] git http://git-scm.com/

[12] mercurial http://mercurial.selenic.com/
[13] GitHub https://github.com/

[14] Bitbucket https://bitbucket.org/

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 062018 doi:10.1088/1742-6596/513/6/062018

5


