
Experiences with moving to open source standards

for building and packaging

D H van Dok, M Sallé and O A Koeroo

Nikhef, Science Park 105, 1098 XG, Amsterdam The Netherlands

E-mail: dennisvd@nikhef.nl msalle@nikhef.nl okoeroo@nikhef.nl

Abstract. The LCMAPS family of grid security middleware was developed during a series
of European grid projects from 2001 until 2013. Since 2009 we actively started to move away
from ETICS, the project-specific build system, to common open-source tools for building and
packaging, such as the GNU Autotools and the Fedora and Debian tool set. By following the
guidelines of these mainstream distributions, and improving the source code to fit in with the
commonly available open source tools, we have established low-cost, long term sustainability of
the code base.

1. History
In 2001 the DataGrid project kicked off a series of European Commission funded projects to
develop a science grid in Europe, complete with the software for resource management and grid
services. Nikhef, together with the University of Amsterdam at the time, contributed several
middleware security components: the LCAS/LCMAPS framework for site access control and
user identity mapping, and gLExec for identity switching based on the above. Continuous
development spanned more than a decade (from DataGrid through EGEE-I, II and III, with
EMI and IGE ending in 2013). We maintain the software to this date.

Most of the middleware in these grid projects has been licensed under an open source license.
(Currently, the Apache License, Version 2.0 is the most common choice.) At the time the
DataGrid project got started, the term open source had been well-established and the practice
of sharing source code was a long-standing tradition in the scientific field.

The 1990s saw the rise of the open source phenomenon, with flagship projects like the
Linux kernel and the Apache web server. The pressure of commercial competition started a
debate about the relative merits of opening source code to public scrutiny, and it led to many
publications on the economical, sociological and security aspects of open source.

The question arises whether the much-trumpeted advantages of open source have improved
the quality of grid middleware. A common theme in the success stories of open source projects
is the building of an engaged community. Since grid middleware occupies a niche market it does
not have a massive user base. Therefore, the choice for an open source license probably was not
motivated by the mantra that ‘enough eyeballs make all bugs shallow,’ (Linus’ Law, [1]), but
rather by fitting the nature of such publicly funded work.

Over the years, the source code base grew. The following EGEE projects (I, II and III) saw
a growth in partnership and contributions. As components were interdependent, the complexity
of maintaining the code base and delivering the software to the growing number of participating

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 052035 doi:10.1088/1742-6596/513/5/052035

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



sites in the European grid demanded the adoption of a central build system to manage it all.
The earlier, home-grown system based on ant was abandoned in favor of ETICS [2, 3], which
came out of EGEE in 2006 and would become a full-blown project in its own right.

While ETICS worked reasonably well, it incurred a regime of rigidly defined dependencies on
exact versions of every piece of software (including those external to the project) in a hierarchy
of projects, systems, subsystems and components which proved quite a management chore for
everyone. As effort was spent making the components work with ETICS it became impractical
to build anything outside it, or for outsiders to reproduce the build conditions of any of the
components. This raised concerns about long term sustainability and adoption outside the
original community, for instance by the Open Science Grid.

Since the project focused on producing software specifically for a single supported platform,
Scientific Linux, there was as good as no building and testing going on for other platforms.
Although the middleware used GNU Autoconf to figure out dependencies, the project used
tailored m4 macros that would work poorly or not at all outside the operating conditions set by
ETICS.

With the third and last EGEE term drawing to a close, we started to worry about the future
of our own contributions. If we wanted to maintain it ourselves, we needed to make sure that
every aspect of the engineering and support surrounding the source code would be under our
control.

2. Taking control
The first problem we needed to address was building the software and its dependencies
(VOMS [4, 5], Gridsite [6] and Globus Toolkit [7]) outside of the ETICS environment. As
the software uses the ubiquitous GNU Autotools [8], this was largely a matter of improving the
dependency discovery code in the m4 macros.

Much work went into the creation of a large shell script to build the software from scratch
on any platform, but gradually we trimmed down the special cases covered in the 1700+ lines
of this script. Our ultimate goal was to match the common pattern of just needing

./configure

make

make install

to build. A few notes about this general recipe must be made.

• The configure command should succeed if and only if all the prerequisites are met, i.e. all
the required software is available on the system.

• If some required software is missing, the configure command must fail in a predictable
manner.

• Once the configure command succeeds, the compilation must not fail.

• If required software is installed in an alternative location, it should be possible to pass this
location to configure via command-line arguments.

• The installation must be redirectable to a staging area by way of setting the DESTDIR

variable.

The Autoconf manual encourages building outside the source tree. This allows simultaneous
builds for different architectures or different configuration settings. It takes some additional
effort on the part of the developers to make this work, but the result is much cleaner. The
ultimate workflow would look something like this:

tar xfz glexec-0.9.8.tar.gz

cd glexec-0.9.8

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 052035 doi:10.1088/1742-6596/513/5/052035

2



mkdir build

cd build

../configure

make

make distcheck

The distcheck target tests building outside the source tree, as well as clean install and
uninstall targets. It then generates a source tar ball that can be distributed. This is the
preferred way of generating distributable sources; it does not include version control artifacts or
anything the developer may accidentally have left behind in the development source tree.

2.1. Code improvements
In the process of reaching the goal of being able to do this for all our middleware packages
we encountered many bugs. Actively trying our distribution tarballs on a variety of platforms
unveiled type mismatches and POSIX violations that went undetected as long as we stuck to
the Scientific Linux platform.

One important choice we made was to stick to the lowest common denominator for our
dependencies. Developers have a natural desire to make use of newly available features as they
come out, but it may take a long time before a particular version of any piece of software trickles
down to the main-stream distributions. Production grids typically still run either Scientific
Linux 5 or CentOS 5, which came out in 2007 and will remain supported until 2017. We have
always been careful about choosing features from the oldest supported distributions.

We wrote man pages for all programs and file types where they were missing, and generally
updated the documentation.

Following an independent security audit, we refactored some code to adhere to more secure
coding standards and removed unsafe constructs.

We improved the logging code and integrated logging to syslog.

2.2. Version control
The version control system used in the DataGrid/EGEE era was CVS, hosted by CERN. We
obtained a dump of the CVS tree for the middleware we maintained and imported it in our own
SVN repository. If we would not already have had an SVN server, we might have considered a
distributed version control system such as Git, Mercurial or Bazaar.

2.3. Bringing out releases
Now that the software was in shape to produce distributable tar balls, we considered what would
be the right way to create and distribute these. If users of our software report bugs or other
problems related to a specific version, it is important that we know exactly which version of the
sources their binaries corresponds to. We therefore implemented the following measures:

tagged releases Every time we prepare a release, we create an svn tag to mark the sources.

signed releases From these tagged sources, a distribution tar ball is created. The developer
then takes SHA1 and SHA256 hashes from the tarball, and copies them in a GPG signed
e-mail to the developer’s mailing list.

permanent URLs The tar ball and hashes are uploaded to a web server which will be the
canonical permanent location. The name of this server is chosen to be rather generic, so
the URLs look like this:

http://software.nikhef.nl/security/lcmaps/lcmaps-1.6.1.tar.gz

The exact steps are written down in our software procedures [9].

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 052035 doi:10.1088/1742-6596/513/5/052035

3



2.4. Packaging
Our responsibilities do not end with releasing sources. The goal of the EMI and IGE projects
was to produce packages that fitted in with the local operating environment, and that meant
producing RPMs for Red Hat Enterprise Linux based systems (such as Scientific Linux and
CentOS) and deb packages for Debian and Ubuntu.

Creating a basic package is simple, but meeting the rigorous guidelines of both the Fedora [10]
and Debian [11] distributions forced us to actually take this a step further.

The use of GNU Autotools turned out to be a real advantage, as this is considered as the
standard build system in both Fedora and Debian and no special arrangements needed to be
made in packaging.

Some care had to be taken in specifying build dependencies. It is recommended to use
the available tooling for building in a clean-room environment, where only the minimal build
dependencies are met. This helps to detect missing dependencies and ensures binary linkage
using the correct paths. For Fedora, the tool to use is called mock. Debian packagers may
consider pbuilder or sbuild. These systems produce standardised reproducible builds.

During the EMI project, ETICS was updated to do mock and pbuilder builds as well. For
us this change proved to be a real simplification as we now could just build from our own source
RPMs.

2.5. Automation
The packaging code is used for several distributions. The Fedora packaging is used for the latest
Fedora releases (which come out semi-yearly), and the backports for the current Red Hat based
systems, EPEL5 and EPEL6. The Debian packaging is used for Debian unstable, stable and
oldstable and could easily be used for Ubuntu as well with minimal changes.

For automating the packaging builds, we have set up Koji [12] (developed and used by Fedora).
By implementing a trigger in our Subversion repository, we initiate a series of package builds
when a tag is created on the SPEC file for a package. Koji issues mock builds internally.

We have not found a suitable automation service for Debian. We have considered several
systems, but all of them had insurmountable drawbacks. Debian’s buildd is geared towards
building a single, complete distribution, Canonical’s Launchpad actively discourages running
a personal version and the Open Build Service did not handle the matching of build time
dependencies in the correct way. So far we have settled on using scripts to launch various builds
with cowpoke and cowbuilder [13] (a variant of pbuilder).

The RPMs coming out of Koji are signed with a dedicated GPG key using sigul and compiled
into a repository using mash. These tools are developed by Fedora and integrate with Koji.

The deb packages are signed with the developer’s GPG key, and placed in a local repository
with the help of the reprepro tool. The repository metadata is automatically signed with
another dedicated GPG key.

The resulting repositories are hosted on software.nikhef.nl, and can be readily installed
on target systems using standard package management tools such as yum and apt-get.

3. Results
The question arises whether the advantages gained by these adaptations are worth the effort
which was needed. This is hard to measure objectively, so we can only present indicators from
personal experience. It is relevant to note that we were already operating a medium-sized grid
computing facility, and we were able to reuse existing systems for mailing lists, version control
and virtual machine management for building and testing.

Moving to POSIX and ANSI C was a gradual process; we encountered a few standard
violations and had to rewrite code occasionally. This helped the portability to other platforms,
such as Debian and Mac OS X, and the transition from i386 to x86_64.

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 052035 doi:10.1088/1742-6596/513/5/052035

4



Fixing the Autotools setup was considerable more effort, but it paid back in ease of porting,
building and packaging.

Since the Open Science Grid is also using gLExec and LCMAPS, they benefited from the
improved Autotools setup. Later they would turn to directly using our source RPMs.

The packaging for Fedora and Debian made up another large portion of work, but the available
guidelines and documentation are excellent. Tools such as rpmlint and lintian helped to find
packaging bugs. Although the guidelines are large bodies of text, they are all sensible and
represent the distilled experience of hundreds of packagers.

The main benefit of the build and packaging automation is the reduced time to release a fix
for any found bug. When a bug is reported, we should know exactly which sources correspond
to it, so it is easier to reproduce. After fixing, rolling out a new release usually takes less than
an hour altogether.

We aim for inclusion in Debian and Fedora, and have already gained from the experience of
veteran packagers in these projects to improve our packaging code.

Staying close to common open source software proved useful when trying to solve the more
obscure issues. Searching on-line for the answers often turned up identical findings on public
mailing lists or forums. Being a member of a large user collective is certainly helpful.

4. Conclusions
Over the course of the last five years we have implemented many changes in the way we treat
our software, by adhering to best practices in open source software development. In our personal
experience these changes have proved to be worth the effort needed to achieve them. We can now
operate in a state of low-cost maintenance. With the reduced amount of available manpower we
are still able to address bugs and issues, and regularly bring out new releases.

Users of our software benefit from easier configuration and installation. Overall we believe
that we have achieved long-term sustainability.

Acknowledgments
This work is part of the research program of the Foundation for Fundamental Research on
Matter (FOM) which is financially supported by the Netherlands Organisation for Scientific
Research (NWO).

This work is part of the activities of the Dutch e-Infrastructure, which is financially supported
by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Netherlands Organisation for
Scientific Research, NWO) and the Dutch higher education and research partnership for network
services and information and communication technology (SURF).

References
[1] Raymond E S 1999 Knowl., Technol. & Policy 12 23–49 ISSN 0897–1986

url: http://dx.doi.org/10.1007/s12130-999-1026-0

[2] Di Meglio A, Bégin M E, Couvares P, Ronchieri E and Takacs E 2008 J. Phys.: Conf. Ser. 119 042010
url: http://stacks.iop.org/1742-6596/119/i=4/a=042010

[3] Bégin M E, Ronco S D, Sancho G D A, Gentilini M, Ronchieri E and Selmi M 2008 J. Phys.: Conf. Ser.
119 042004
url: http://stacks.iop.org/1742-6596/119/i=4/a=042004

[4] Alfieri R, Cecchini R, Ciaschini V, dell’Agnello L, Frohner A, Gianoli A, Lőrentey K and Spataro F 2004 Grid
Computing (Lecture Notes in Computer Science vol 2970) ed Fernández Rivera F, Bubak M, Gómez Tato
A and Doallo R (Springer Berlin Heidelberg) pp 33–40 ISBN 978-3-540-21048-1
url: http://dx.doi.org/10.1007/978-3-540-24689-3_5

[5] Alfieri R, Cecchini R, Ciaschini V, dell’Agnello L, Frohner A, Lőrentey K and Spataro F 2005 Future Gener.
Comput. Syst. 21 549 – 558 ISSN 0167-739X
url: http://www.sciencedirect.com/science/article/pii/S0167739X04001682

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 052035 doi:10.1088/1742-6596/513/5/052035

5



[6] McNab A 2005 Softw.: Pract. and Exp. 35 827–834 ISSN 1097-024X
url: http://dx.doi.org/10.1002/spe.690

[7] Foster I and Kesselman C 1997 Int. J. of High Perform. Comput. Appl. 11 115–128 (Preprint http:

//hpc.sagepub.com/content/11/2/115.full.pdf+html)
url: http://hpc.sagepub.com/content/11/2/115.abstract

[8] The Free Software Foundation Inc. 2012 GNU autoconf – creating automatic configuration scripts
url: http://www.gnu.org/software/autoconf/manual/

[9] van Dok D H and Sallé M 2013 Site access control software procedures
url: http://wiki.nikhef.nl/grid/SAC_software_procedures

[10] Callaway T et al. 2012 Fedora project packaging guidelines
url: http://fedoraproject.org/wiki/Packaging:Guidelines

[11] Jackson I et al. 2013 Debian policy manual
url: http://www.debian.org/doc/debian-policy/

[12] McLean M et al. 2013 Koji - rpm building and tracking system
url: http://fedorahosted.org/koji/

[13] The Debian Project 2012 Cowbuilder tutorial
url: http://wiki.debian.org/cowbuilder

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 052035 doi:10.1088/1742-6596/513/5/052035

6


