
Evaluating Predictive Models of Software Quality

V Ciaschini, M Canaparo, E Ronchieri, D Salomoni

INFN CNAF, Bologna 40126, Italy

E-mail: elisabetta.ronchieri@cnaf.infn.it

Abstract. Applications from High Energy Physics scientific community are constantly
growing and implemented by a large number of developers. This implies a strong churn on
the code and an associated risk of faults, which is unavoidable as long as the software undergoes
active evolution. However, the necessities of production systems run counter to this. Stability
and predictability are of paramount importance; in addition, a short turn-around time for the
defect discovery-correction-deployment cycle is required. A way to reconcile these opposite foci
is to use a software quality model to obtain an approximation of the risk before releasing a
program to only deliver software with a risk lower than an agreed threshold.

In this article we evaluated two quality predictive models to identify the operational risk
and the quality of some software products. We applied these models to the development history
of several EMI packages with intent to discover the risk factor of each product and compare it
with its real history. We attempted to determine if the models reasonably maps reality for the
applications under evaluation, and finally we concluded suggesting directions for further studies.

1. Introduction
Although the quality-concept of software changes depending on user perspectives as stated
by various authors [1], [2], a set of attributes and metrics exist to formalize and measure
software characteristics according to defined unambiguous rules [3]. In this area researchers
concentrate efforts to predict whether products and processes will meet goals for quality during
the development life cycle. Many papers support models that profess to minimize the number
of defects in software by predicting where they are likely to be detected [4]. The main context
of this kind of models is given by the metrics [5] released by NASA regarding its own software
projects [6]; however, open source systems are also considered. Over half of the studies of
predictive models have analyzed code written in C or C++, and 20% of them are for code in
Java. So far there are several challenges to be tackled: the identification of the right predictive
model; the addressing of the known software capabilities, such as adaptability, maintainability,
and reliability; the approximation of the risk factor for having faulty software packages before
releasing a program; and the estimation of the number of defects.

The European Middleware Initiative (EMI) [7] was a project that aimed to develop and
maintain software products of several partners in the context of the Large Hadron Collider
experiment at CERN. In this study, we evaluated the operational risk and software quality of
some EMI products under the INFN responsibility and still under development by using two
quality predictive models with the discriminant analysis and regression method. We attempted
to determine if the models reasonably map reality of the selected software products. The
considered inputs of these models are divided in dependent and independent variables: the
former are parameters derived from the size of the code, for example the number of lines of

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 052030 doi:10.1088/1742-6596/513/5/052030

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1

code, the number of classes defined per file, and the number of components defined per software
project; the latter are static code metrics (the most common basis for this kind of models),
and previous fault data that express a continuing faulty behaviour of a piece of code. The
outputs are expressed by dependent variables that we chose to highlight fault-prone software
products. At the end of this study, we learnt that these models offer a great chance to improve
the software development process. A previous review of the discriminant analysis model showed
a high mathematical precision in estimating the risk factor. However, an increasing amount
of data can improve the precision rate. We aim, therefore, to reach the same accuracy with
the regression model by even introducing a new function that considers the measured data.
Despite the initial effort to learn and understand predictive models, they may suggest which
software products are more error prone and should receive greater attention (during the testing
and quality assurance phases). The paper is organized as follows. In Section 2, a detailed
description of the study is presented. Section 3 provides a first analysis on the raw collected
data, while Section 4 provides a second analysis on the statistical data. Finally, Section 5 gives
some conclusions on the performed evaluation.

2. Study Description
The experiment consisted of evaluating software quality of some EMI products in all the EMI
distributions [8] by using predictive models.

As first approximation, we selected the INFN software products from the EMI project
to analyze code coming from different development environments of the same institute
but belonging to the same application fields (that are mainly related to the High Energy
Physics community): CREAM (Computing Resource Execution And Management), a simple,
lightweight service for job management operation at the computing element level [9]; StoRM
(STOrage Resource Manager), an implementation of the standard SRM interface for disk-
based storage solutions [10]; VOMS (Virtual Organization Management System), an attribute
authority service [11]; WMS (Workload Management System), an implementation of the early
binding approach to meta-scheduling [12]; WNoDeS (Worker Nodes on Demand Service), a
solution to virtualize computing resources and to make them available through local, Grid and
Cloud intefaces [13]; and parts of YAIM (Yet Another Installation Manager), a well-known
and widely used grid services configuration tool [14]. As a consequence, we considered their
software packages (see table 1) released in correspondence of the three EMI distributions -
EMI 1 Kebnekaise, EMI 2 Matterhorn, and EMI 3 Monte Bianco. WNoDeS differs from the
other software products since it was introduced starting from EMI 2. The source types are
heterogeneous because of their use of different programming languages.

To address this study we decided to choose the most significant static metrics, which are
part of the product category that provides results of the software development activities [15].
This category contains metrics that for example characterize the product by size, complexity
and quality. They are directly or indirectly measurable by considering their attributes: those
internal, such as Lines Of Code (LOC), have direct measures, while those external such as quality
and complexity have indirect measures. The tabbed metrics are subdivided in size, quality and
complexity types. The subset of the size metrics consist of: the Number Of Files (NOF), and
the Number Of Extensions (NOE) in the software package; the Blank Lines Of Code (BLOC),
the Comment Lines Of Code (CLOC), and LOC found in the files of the software package; and
the Number Of Programming Languages (NOPL) supported in the software package. They may
contribute to notice that a certain type or method might be hard to maintain. The considered
complexity metric is the McCabe cyclomatic [16] that determines the complexity of a section
of source code by measuring the number of linearly independent paths in the flow of the source
code. It is based on a graph flow representation of the program, where nodes express processing
tasks and edges show the control flow between nodes. An interpretation of the McCabe metric

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 052030 doi:10.1088/1742-6596/513/5/052030

2

is that a complex control flow will require more tests to achieve good code and will penalize its
maintainability. The chosen quality metric is the number of reported defects of each release,
which we denote Number of Defects (NOD).

Table 1. Software packages for the specified software product in all the EMI distributions: x

means that the specified source package in the given EMI distribution has been updated.

Products EMI 1 EMI 2 EMI 3

CREAM glite-ce-cream-1.13.x-x glite-ce-cream-1.14.x-x glite-ce-cream-1.x.x-x
glite-ce-cream-api-java-1.13.x-x glite-ce-cream-api-java-1.14.x-x glite-ce-cream-api-java-1.x.x-x
glite-ce-cream-cli-1.13.x-x glite-ce-cream-cli-1.14.x-x glite-ce-cream-cli-1.15.x-x
glite-ce-cream-client-api-c-1.13.2-3 glite-ce-cream-client-api-c-1.14.x-x glite-ce-cream-client-api-c-1.15.x-x
glite-ce-cream-utils-1.1.0-3 glite-ce-cream-utils-1.2.x-x glite-ce-cream-utils-1.3.x-x
glite-ce-yaim-cream-ce-4.2.x-x glite-ce-yaim-cream-ce-4.3.x-x glite-ce-yaim-cream-ce-4.4.x-x

StoRM storm-backend-server-1.x.x-x storm-backend-server-1.x.x-x storm-backend-server-1.11.0-43
storm-common-1.1.x-x
storm-dynamic-info-provider-1.7.x-x storm-dynamic-info-provider-1.7.4-3 storm-dynamic-info-provider-1.7.4-4
storm-frontend-server-1.7.x-x storm-frontend-server-1.8.0-x storm-frontend-server-1.8.1-1
storm-globus-gridftp-server-1.1.0-x storm-globus-gridftp-server-1.2.0-4 storm-globus-gridftp-server-1.2.0-5

storm-gridhttps-plugin-1.0.3-x storm-gridhttps-plugin-1.1.0-4
storm-gridhttps-server-1.1.0-3 storm-gridhttps-server-2.0.0-230
storm-pre-assembled-configuration-1.0.0-6 storm-pre-assembled-configuration-1.1.0-8

storm-srm-client-1.5.0-x storm-srm-client-1.6.0-6 storm-srm-client-1.6.0-7
tstorm-1.2.1-2 tstorm-2.0.1-13

yaim-storm-4.1.x-x yaim-storm-4.2.x-x yaim-storm-4.3.0-21

VOMS voms-2.0.x-x voms-2.0.x-x voms-2.0.x-x
voms-admin-client-2.0.16-1 voms-admin-client-2.0.17-1 voms-admin-client-x.x.x-x
voms-admin-server-2.6.1-1 voms-admin-server-2.7.0-1 voms-admin-server-3.0.x-x
voms-api-java-2.0.x-x voms-api-java-2.0.x-x voms-api-java-3.0.x-x
voms-clients-2.0.x-x voms-clients-2.0.8-1 voms-clients-3.0.x-x
voms-devel-2.0.x-x voms-devel-2.0.8-1 voms-devel-2.0.8-1
voms-mysql-3.1.5-1 voms-mysql-3.1.6-1 voms-mysql-3.1.6-1
voms-oracle-3.1.12-1 voms-oracle-3.1.12-1 voms-oracle-3.1.15-2
voms-server-2.0.x-x voms-server-2.0.8-1 voms-server-2.0.8-1
yaim-voms-1.x.x-x yaim-voms-1.1.1-1 yaim-voms-1.1.1-1

WMS wms-broker-3.3.x-x wms-broker-3.4.0-4
wms-brokerinfo-3.3.1-3 wms-brokerinfo-3.4.0-4
wms-brokerinfo-access-3.3.2-3 wms-brokerinfo-access-3.4.0-4 wms-brokerinfo-access-3.5.0-3
wms-classad-plugin-3.3.1-3 wms-classad-plugin-3.4.0-4
wms-common-3.3.x-x wms-common-3.4.0-5 wms-common-3.x.x-x
wms-configuration-3.3.x-x wms-configuration-3.4.0-5 wms-configuration-3.x.x-x

wms-core-3.5.0-7
wms-helper-3.3.x-x wms-helper-3.4.0-5
wms-ice-3.3.x-x wms-ice-3.4.0-7 wms-ice-3.5.0-4

wms-interface-3.x.x-x
wms-ism-3.3.x-x wms-ism-3.4.0-7
wms-jobsubmission-3.3.x-x wms-jobsubmission-3.4.0-9 wms-jobsubmission-3.5.0-3
wms-manager-3.3.x-x wms-manager-3.4.0-6
wms-matchmaking-3.3.x-x wms-matchmaking-3.4.0-6
wms-purger-3.3.x-x wms-purger-3.4.0-4 wms-purger-3.5.0-3
wms-ui-api-python-3.3.3-3 wms-ui-api-python-3.4.0-5 wms-ui-api-python-3.5.0-3
wms-ui-commands-3.3.3-3 wms-ui-commands-3.4.0-x wms-ui-commands-3.5.x-x
wms-ui-configuration-3.3.2-3 wms-ui-configuration-3.3.2-3
wms-utils-classad-3.2.2-2 wms-utils-classad-3.3.0-2 wms-utils-classad-3.4.x-x
wms-utils-exception-3.2.2-2 wms-utils-exception-3.3.0-2 wms-utils-exception-3.4.x-x
wms-wmproxy-3.3.x-x wms-wmproxy-3.4.0-7
wms-wmproxy-api-cpp-3.3.3-3 wms-wmproxy-api-cpp-3.4.0-4 wms-wmproxy-api-cpp-3.5.0-3
wms-wmproxy-api-java-3.3.3-3 wms-wmproxy-api-java-3.4.0-4
wms-wmproxy-api-python-3.3.3-3 wms-wmproxy-api-python-3.4.0-4
wms-wmproxy-interface-3.3.3-3 wms-wmproxy-interface-3.4.0-x
yaim-wms-4.1.x-x yaim-wms-4.2.0-6 yaim-wms-4.2.0-6

WNoDeS wnodes-accounting-1.0.0-4
wnodes-bait-2.0.x-x wnodes-bait-2.0.8-3

wnodes-cachemanager-2.0.1-3
wnode-cli-1.0.3-12
wnodes-cloud-1.0.0-7

wnodes-hypervisor-2.0.x-x wnodes-hypervisor-2.0.5-9
wnodes-manager-2.0.x- wnodes-manager-2.0.3-5
wnodes-nameserver-2.0.x-x wnodes-nameserver-2.0.4-3
wnodes-site-specific-2.0.x-x wnodes-site-specific-2.0.2-3
wnodes-utils-2.0.x-x wnodes-utils-2.0.4-3

YAIM glite-yaim-clients-5.0.0-1 glite-yaim-clients-5.0.1-2 glite-yaim-clients-5.2.0-1
glite-yaim-core-5.0.0-1 glite-yaim-core-5.1.0-1 glite-yaim-core-5.1.2-1

The measurement of the selected metrics has been organized as follows. While for the

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 052030 doi:10.1088/1742-6596/513/5/052030

3

quality metric we considered the information contained in the release notes of each software
products [17], and calculated NOD for each software product by hand; for the others we used
the following open source tools. Cloc [18] counts blank lines, comment lines, and physical lines
of source code in C, C++, Python, Java, Perl, Bourne Shell, C Shell, and other programming
languages. Pmccabe [19] calculates McCabe-style cyclomatic complexity for code in C and
C++. Radon [20] calculates various metrics from the source code such as McCabe’s cyclomatic
complexity, SLOC, comment lines, and blank lines for source code in Python. Pylint [21] is
an analyzer for code in Python, which looks for programming errors, helps enforcing a coding
standard and sniffs for some code smells. Findbugs [22] performs static analysis for code in Java.
JavaNCSS [23] measures McCabe-style cyclomatic complextity and source statements for code
in Java.

With the collected data we performed a first analysis to identify those software products with
some criticalities, such as the presence of anomalous behaviour or the contribution to system
failures. Then, they determined the inputs of predictive models based on the discriminant
analysis technique. With the produced outputs we settled the risk of these products to be fault-
prone [24], [25], [26] and we compared it with the criticalities. We implemented a simple Matlab
script to elaborate the input data conveniently and produced significative outcomes.

3. Raw Data Analysis
For each size metric we set a threshold over which software package might have issues about its
maintainability, stability and usability: 10000 for LOC, 10000 for BLOC, 10000 for CLOC, 4
for NOPL, 4 for NOE, and 200 for NOF. We observed what follows for the software packages
detailed in table 1: LOC - the glite-ce-cream-cli, voms, storm-frontend-server, and wms-ice
software packages might be the most complicated packages to maintain due to the high number
of code lines; BLOC and CLOC - the glite-ce-cream-client-api-c, voms-admin-server, storm-
backend-server, and wms-common software packages might falsify the productivity level of
the correspondent software product because of the high number of blank lines; NOPL and
NOE - the storm-backend-server, voms, and glite-ce-cream-utils software packages might be
ported on other platforms with difficulty containing at least four programming languages. The
supported languages, such as C Shell, Bourne Shell, Python, Java, C++ and C, are distributed
among the software packages and might contribute to a reduction in team effort for their
maintainability; NOF - the glite-ce-crema-cli, voms, voms-admin-server, storm-backend-server,
and storm-backend-frontend software packages might be maintained with difficulties over time
due the the high number of files. For complexity metric we adopted the rank order of the
score of block complexity as specified in the radon documentation [27]: 1-5 low simple block;
6-10 low-well structured and stable block; 11-20 moderate-slightly complex block; 21-30 more
than moderate-more complex block; 31-40 high-complex block, alarming; 41+ very high-error
prone. According to this ranking we observed alarming block and error prone block scores in
the majority of the software products with the exclusion of YAIM in each EMI distribution:
CREAM, StoRM, VOMS and WMS show such issues for code in C and C++; WMS and
WNoDeS for code in Python; CREAM, StoRM and VOMS for code in Java. Concerning the
C and C++ code, the main cause is the inclusion of external software in the packages like the
std2soap.c file; furthermore these types of blocks remain the same or increase over the EMI
distributions. Table 2 shows the size metrics measured for all the software products in all the
EMI distributions.

For the defect metric, we noticed that defects were related to code, build, package, and
documentation. Table 4 shows the defect density of the EMI-th distribution as a non-linear
combination of TNOD

TLOC over software products, where TNOD is the total number of defects and
TLOC is the total lines of code.

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 052030 doi:10.1088/1742-6596/513/5/052030

4

Table 2. Size metrics measured for all the software products in all the EMI distributions

Size Metrics EMI Distributions Software Products

CREAM StoRM VOMS WMS WNoDeS YAIM

Total NOF EMI 1 407 1063 2872 1269 N.A. 31
EMI 2 723 1304 1605 1229 104 31
EMI 3 680 1521 1689 923 256 31

Max NOPL EMI 1 4 4 6 4 N.A. 3
EMI 2 4 4 5 4 2 3
EMI 3 3 4 5 4 2 3

Max NOE EMI 1 7 11 11 9 N.A. 8
EMI 2 7 11 10 8 5 8
EMI 3 7 11 10 9 5 8

Total LOC EMI 1 124806 278625 553930 790149 N.A. 2837
EMI 2 151919 393053 465238 737718 38564 2966
EMI 3 73929 419897 464051 336486 61461 2966

Total BLOC EMI 1 22471 44931 112453 122407 N.A. 736
EMI 2 29298 59514 88011 109020 6072 751
EMI 3 18316 63020 87730 52576 10505 752

Total CLOC EMI 1 24716 68378 105021 160404 N.A. 1201
EMI 2 31170 85592 89299 154831 7028 1223
EMI 3 20171 87823 90974 95214 11651 1226

Max N1-5 EMI 1 1022 5616 3449 2124 N.A. 55
EMI 2 1128 5729 3685 2475 268 55
EMI 3 1182 6516 3724 2466 397 75

Max N6-10 EMI 1 149 310 170 400 N.A. 10
EMI 2 163 339 170 446 11 10
EMI 3 178 416 168 450 12 10

Max N11-20 EMI 1 61 134 80 204 N.A. 2
EMI 2 75 147 51 207 7 3
EMI 3 79 171 53 208 7 9

Max N21-30 EMI 1 20 44 14 62 N.A. 0
EMI 2 30 45 10 68 2 1
EMI 3 33 45 9 85 2 4

Max N31-40 EMI 1 4 17 7 26 N.A. 0
EMI 2 11 17 5 29 1 0
EMI 3 11 24 5 61 2 2

Max N41+ EMI 1 7 4 25 30 N.A. 0
EMI 2 14 4 16 31 2 0
EMI 3 16 8 16 35 2 1

4. Statistical Evaluation
The same collected data determine the level of risk of a software product to be fault-prone as
function of the level of importance of all the measured metrics. We call a product ”fault-prone”
if it is likely to contain a high number of faults [28] by analysing 62 software packages (shown
in table 1) in all the three EMI distributions. This was done without setting an appropriate
threshold on the number of faults expected because it represents an uncertain resource constraint
at the time of modeling: therefore we only predicted the rank-order of software products [29].

By using statistical theory we calculated data to determine the level of importance of each
metric (MRL) and the level of risk of each software product (SPRL). Considering all the
software packages p = 65, we calculated MRLj of the j-th metric as equation 1, where the
weight Ri of the i-th package is multiplied over the normalized deviation of the i-th package; Ri

is given by the fraction between the total number of defects di and the length of time period ti
over which the defects occurred for a given package, while xi,j is the j-th metric measure of the
i-th package. Considering all the metrics m = 13 and the software products n = 6 that contain
a given set of software packages [h, k] (as specified in table 1), we calculated SPRLz of the z-th
product normalized considering its total lines of code TLOCz as equation 2, where MRLj is
multiplied over xi,j . Table 3 shows the set of critical metrics highlighting their minimum and
maximum values: the higher the value of MRL for a metric, the higher is its importance. Table 5

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 052030 doi:10.1088/1742-6596/513/5/052030

5

shows the levels of software products highlighting their minimum values and maximum values
over distributions: the higher the value of SPRL, the less is the risk of faults in the product.

MRLj =

p∑
i=1

Ri ·
|xi,j − µj |

σj
(1) SPRLz =

1

TLOCz

k

p

k∑
i=h

(

m∑
j=1

MRLj · xi,j) (2)

Table 3. Levels of Importance of Each
Metric MRLj .

Metrics EMI 1 EMI 2 EMI 3

NOF 1.3362 0.7128 0.7155
NOPL 1.8041 0.8449 0.9286
NOE 1.8041 0.8449 0.9286
LOC 1.5338 0.7913 0.9199
BLOC 1.4750 0.8087 0.9197
CLOC 1.3018 0.5460 0.6616
N1-5 1.3171 0.6117 0.6646
N6-10 1.5690 0.6506 0.7055
N11-20 1.5849 0.6862 0.7303
N21-30 1.4912 0.6765 0.5378
N31-40 1.3744 0.5120 0.4994
N41 1.3391 0.6788 0.7739
NOD 2.0128 1.4964 0.7690

Table 4. Defects Density vs Software
Product Size over Software Products.

Table 5. Predicted Defects for all the software products in all the EMI distributions

Software Products EMI Distributions Parameters

SPRL Predicted Defects Detected Defects

CREAM EMI 1 0.1933 19 30
EMI 2 0.0997 23 62
EMI 3 0.1265 13 15

StoRM EMI 1 0.3611 39 57
EMI 2 0.1774 53 17
EMI 3 0.2057 56 31

VOMS EMI 1 0.1816 73 41
EMI 2 0.1499 62 21
EMI 3 0.1861 62 32

WMS EMI 1 0.1273 102 70
EMI 2 0.0945 96 51
EMI 3 0.1488 46 16

WNoDeS EMI 1 N.A. N.A. N.A.
EMI 2 1.8079 9 27
EMI 3 1.4052 11 19

YAIM EMI 1 35.4611 4 25
EMI 2 23.5059 4 11
EMI 3 29.1175 4 2

At this time with the available data and the actual defect data, we used the most suitable
method in seeking fault-prone software products [25] - the discriminant analysis that determines
the minimum number of variables to discriminate the fault-prone products. As result, the
statistical model with the specified method predicts the risk of a software product of being fault
prone with a precision of 83%. Then, with the use of size and complexity metrics, we tried to
predict the defects as shown in table 5. This time we used a regression predictive method [26]
that ignores the underlying casual effects of programmers and designers - the human factors.
As a consequence, this determines an inaccurate number of defects.

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 052030 doi:10.1088/1742-6596/513/5/052030

6

5. Conclusions
Considering the available data, we observed that predictive models may be valid instruments
to determine the quality of software in the early phases of development to reconcile stability
and quick defect fixing. We have shown that not all predictive methods actually work. The
discriminant analysis method gives quite good results (83%) and is much better than the used
regression method. The outcomes for all methods improve for large amount of data. Therefore
future work should aim at verifying further predictive methods to identify those that provide
better defect predictions.

References
[1] Musa J D 1998 Software Reliability Engineering (Osborne/McGraw-Hill)
[2] Rae A K, Hausen H L and Robert P 1994 Software Evaluation for Certification: Principles, Practice and

Legal Liability (The Mcgraw-Hill International Software Quality Assurance Series) (Mcgraw Hill Book Co
Ltd)

[3] Boehm B W, Brown J R and Lipow M 1976 Quantitative evaluation of software quality the 2nd International
Conference on Software Engineering (Los Alamitos)

[4] Hall T, Beecham S, Hall T, Bowes D, Gray D and Counsell S 2012 IEEE Transaction on Software Engineering
36 1276–1304

[5] Nasa-softwaredefectdatasets URL http://nasa-softwaredefectdatasets.wikispaces.com

[6] Shepperd M, Song Q, Sun Z and Mair C 2013 IEEE Transaction on Software Engineering 39 1208–1215
[7] Home - eurpean middleware initiative URL http://www.eu-emi.eu/

[8] Aiftimiei C, Ceccanti A, Dongiovanni D, Meglio A D and Giacomini F 2012 Journal of Physics: Conference
Series 396 URL http://iopscience.iop.org/1742-6596/396/5/052002

[9] Andreetto P, Bertocco S, Capannini F, Cecchi M, Dorigo A, Frizziero E, Gianelle A, Giacomini F, Mezzadri
M, Monforte S, Prelz F, Molinari E, Rebatto D, Sgaravatto M and Zangrando L 2011 Journal of Physics:
Conference Series 331 URL http://iopscience.iop.org/1742-6596/331/6/062024

[10] Zappi R, Ronchieri E, Forti A and Ghiselli A 2011 An Efficient Grid Data Access with StoRM (Springer
New York) chap VI Grid Middleware and Interoperability, pp 239–250 Data Driven e-Schience. Use Cases
and Successful Applications of Distributed Computing Infrastructures (ISGC 2010)

[11] Ceccanti A, Ciaschini V, Dimou M, Garzoglio G, Levshina T, Traylen S and Venturi V 2009 Journal of
Physics: Conference Series 219 URL http://iopscience.iop.org/1742-6596/219/6/062006

[12] Cecchi M, Capannini F, Dorigo A, Ghiselli A, Giacomini F, Maraschini A, Marzolla M, Monforte S, Pacini
F, Petronzio L and Prelz F 2009 The glite workload management system Advanced in Grid and Pervasive
Computing (Lecture Notes in Computer Science vol 5529) (Springer Berlin Heidelberg) pp 256–268

[13] Salomoni D, Italiano A and Ronchieri E 2011 Journal of Physics: Conference Series 331 URL http:

//iopscience.iop.org/1742-6596/331/5/052017

[14] Jayalal M L, Rajeswari S and Murty S A V S 2009 Application of yaim tool in grid computing Tech. rep.
Superintendents Advisory Committee on Enrollment and Transfers (SACET)

[15] Kan S H 2002 Metrics and Models in Software Quality Engineering (Addison-Wesley Professional)
[16] McCabe T J 1976 IEEE Transactions on Software Engineering SE-2 308–320
[17] Releases-european middleware initiative URL www.eu-emi.eu/releases

[18] Cloc-count lines of code URL http://cloc.sourceforge.net

[19] pmccabe package: Ubuntu URL https://launchpad.net/ubuntu/+source/pmccabe

[20] radon 0.4.3: Python package index URL https://pypi.python.org/pypi/radon

[21] Pylint user manual URL http://docs.pylint.org/

[22] findbugs-static analysis tool to find coding defects in java programming URL code.google.com/p/findbugs/

[23] Javancss-a source measurement suite for java URL www.kclee.de/clemens/java/javancss

[24] Zheng J, Williams L, Nagappan N and Snipes W 2006 IEEE Transaction on Software Engineering 32 240–253
[25] Guo G and Guo P 2008 Experimental study of discriminant method with application to fault-prone module

detection International Conference on Computational Intelligence and Security
[26] Fenton N 1990 Journal of Software Engineering 5 65–78
[27] Using radon programmatically - radon 0.4.3 documentation URL https://radon.readthedocs.org/en/

latest/api.html

[28] Ohlsson N and Wohlin C 1996 Identification of failure-prone modules in two software system releases 21st
Annual Software Engineering Workshop (Greenbelt, Maryland, USA)

[29] Khoshgoftaar T M and Seliya N 2003 Empirical Software Engineering Journal 8 325–350

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 052030 doi:10.1088/1742-6596/513/5/052030

7

