20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 052020 doi:10.1088/1742-6596/513/5/052020

Systematic profiling to monitor and specify the
software refactoring process of the LHCb experiment

Ben Couturier!, E. Kiagias? and Stefan B. Lohn!

! CERN, CH-1211 Geneva 23, Switzerland
2 University of Athens, Greece

E-mail: ben.couturier@cern.ch emmanouil.kiagias@cern.ch stefan.lohn@cern.ch

Abstract. The LHCb upgrade program implies a significant increase in data processing that
will not be matched by additional computing resources. Furthermore, new architectures such
as many-core platforms can currently not be fully exploited due to memory and 1/O bandwidth
limitations. A considerable refactoring effort will therefore be needed to vectorize and parallelize
the LHCb software, to minimize hotspots and to reduce the impact of bottlenecks. It is crucial
to guide refactoring with a profiling system that gives hints to regions in source-code for possible
and necessary re-engineering and which kind of optimization could lead to final success.
Software optimization is a sophisticated process where all parts, compiler, operating system,
external libraries and chosen hardware play a role. Intended improvements can have different
effects on different platforms. To obtain precise information of the general performance, to make
profiles comparable, reproducible and to verify the progress of performance in the framework,
it is crucial to produce profiles more systematically in terms of regular profiling based on
representative use cases and to perform regression tests. Once a general execution, monitoring
and analysis platform is available, software metrics can be derived from the collected profiling
results to trace changes in performance back and to create summary reports on a regular basis
with an alert system if modifications led to significant performance degradations.

1. Introduction

In large-scale software solutions of high energy physics (HEP), performance is critical for efficient
result extraction. The LHCb software is constantly evolving. Thus it is important that software
is easily maintainable, is flexible for changes and keeps the usability simple for the huge developer
community. These considerations may mean that performance has a lesser priority. The many
available profiling tools do not change the game, since performance information is not clearly and
reliably available to determine the importance of optimization measures. The LHCb performance
& regression (PR) project tries to address this issue for the LHCb experiment.

During its development phase, the LHCb software was constantly optimized; the profiling was
however the responsibility of each developer, with no “official” profiling test suite defined and no
record of the results. While this approach was effective during the initial framework development
phase, there is no record of the evolution of software performance of the baseline. With a
refactoring of the code under way, it is therefore now necessary for LHCb to put systematic
profiling tests in place, in order to ensure that there is no performance degradation.

This paper gives an overview of LHCb software and the objectives of the LHCb PR project in
chapter 2, the work-flow with some technical aspects in chapter 3 and briefly goes into upcoming
challenges in chapter 4.

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
BY of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Published under licence by IOP Publishing Ltd 1

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 052020 doi:10.1088/1742-6596/513/5/052020

2. LHCb computing

2.1. LHCbH software

The LHCb experiment software is based on Gaudi[l], a C++ framework using generic and
object-oriented features of C++ for computing intensive tasks, and python for configuring and
structuring modules (algorithms, services, tools). Gaudi provides core services and tools for
applications to hide complexity and make future development and changes more transparent for
users. It is a large-scale framework and is additionally used by ATLAS, Glast, Harp and other
experiments.

Online and Offline applications are built on top of Gaudi. Moore is the implementation
of the High-Level Trigger (HLT) to decide whether event data will be stored or not, Brunel is
responsible for offline reconstruction, DaVinci is the physics analysis framework, Gauss simulates
the particle transport and interaction through several detector modules using Geant4, and Boole
performs the digitization.

2.2. Computing environment

The LHCb computing environment consists of computing resources of the Worldwide LHC
Computing Grid (WLCG), of Cloud Infrastructure and of the HLT farm located at the
experiment. In addition virtualization is used and just recently volunteer computing has been
added using Boinc. Some 100k CPUs are involved in the data processing.

2.3. Integrated Profiling
Instrumentation is a crucial advantage for profiling source-code of large-scale frameworks.
Multiple profiling measures have been implemented in the Gaudi framework using the
AuditorService [2] which provides an interface for executing code between events or algorithms.
Timing information from the operating system’s process information is collected using the
TimingAuditor. Likewise information can be collected using the Memory- or MemStat Auditor
for changes in the memory footprint. Recent work [5] conducted by Mazurov and Couturier
has shown how to improve precision in profiling the event-loop by using instrumentation
routines of Intel’s VTune™Amplifier API, which can be added using Gaudi’s IntelAuditor.
Another strategy is to collect information from the performance monitoring unit (PMU) of
modern CPU architectures to collect information about hardware usage such as cache-misses,
branch-misprediction and more, as done by Kruse and Kruzelecki [6]. Many profilers and
instrumentation routines have been integrated to provide tools for developers to profile their
code. Still, profilers have never been used systematically.

2.4. Systematic Profiling
Three important aspects are crucial for systematic profiling. Profiles must be comparable,
reproducible and representative to allow regression analysis and to trace back changes in
performance to regions in source-code. This approach is called a top-down analysis. Anomalies
are detected by comparing the general performance, and in case of a performance drawback
responsible algorithms have to be pointed out. Successively the scope can be limited to regions
in code, like modules (libraries), algorithms, functions or other entities of source-code locations.
Systematic profiling should be limited to a small number of default use cases and a fixed set
of reference data to facilitate finding changes in performance which are crucial for production
and to point out source-code regions, that are good candidates for performance optimization.
Representative reference data are important to avoid variance due to different types of physics.
This way differences in execution behavior between two revisions must originate in related source-
code changes. Changing the reference set of physics events could later on be used to evaluate the
needs of computing resources for upcoming data-taking periods with differing event information.

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 052020 doi:10.1088/1742-6596/513/5/052020

,,

Setup Environment
(e.g. SetupProject)

|

|

!

|

|

! Run Gaudi App.

| (Profiler + App.)

| y
I Start Execute Handler

I Profiling Store prof. output (Parse & Store to db)
| on AFS

Repeat
run?

Prepare Output
(Use reporting tools)

Multiple
Handler?

Proceed
to Data
Analysis

Data
Analysis

Def.
Test
Conf.

Run Conf.

Figure 1. The work-flow has three main parts. A) the test definition, triggering and job submission. B)
the job execution, repetition and data collection using data handlers. C) quick access to profiling results.

Furthermore, profiles must be reproducible in order to compare test configurations of executed
test jobs. This affects the job description, which is given by version/platform/host information,
as well as the run configuration, which is providing the setup of a run by an option (configuration)
file. As soon as tests are reproducible with representative and reliable results evaluated through
multiple runs, tests become comparable for further examinations.

Hence the LHCb PR project has the following requirements.

(i) Performance information must be centrally collected and become easily accessible. A web
application as interface to support brief analysis of collected data could achieve this, while
additionally facilitating the propagation of issues.

(ii) Profiling is a changing subject with new interesting technologies. A solution must be flexible
to include information collected with new profiling tools.

(iii) Regular execution is necessary to comply with the objective of a reliable regression analysis.
An automated chain of triggering, setup, execution and data collection simplifies repetitions
of a kind of job and regular execution for changing job configurations.

3. LHCb PR project

3.1. Work-flow

The LHCDb PR project provides support to conduct systematic profiling. To fulfill the objectives
and requirements the work-flow can technically be divided into three major parts, as shown
in figure 1. In (figure 1A), for reproducibility, the job description and run configuration must
be referenced to the collected profiling results from a central relational database. The job
description and run configuration is characterized by a job description ID provided by the
database, while option files are stored in the version controlled PRConfig package. Jenkins [8], a
continuous integration system, is now used to manage the test configuration, to trigger profiling
and submit test jobs for a certain automation of profiling and integration into the software life
cycle.

Before the profiling run (figure 1B), a wrapper to setup and start the requested configuration
is generated and executed. During execution the profile is acquired and stored on a distributed
file system (AFS) or locally. Reports are generated from profiles. Afterwards data handlers for
parsing reports and collecting results are called. Results are stored in a relational database,
while locally generated files are pushed onto storage to make them accessible via the web based
analysis application. In the end of the process (figure 1C) profiles can be easily examined and

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 052020 doi:10.1088/1742-6596/513/5/052020

compared using the LHCb PR web analysis interface. Any anomalies in performance, currently
only on algorithm level, can be detected.

3.2. LHCb PR web interface

The core of the LHCb PR framework is a web interface based on Django [7] to analyze profiles.
The backbone of Django is using python to speed up development while keeping a certain amount
of flexibility due to a variety of auxiliary modules available. Processing intensive tasks can be
performed on the server-side while keeping the interface, on client-side, quick and smart.

The front-end can roughly be divided into two main aspects, navigation and visualization.
To navigate easily through data, results can directly be accessed by their category, where
jobs from a specific job description and run configuration belong to the same category. A
generic selection menu allows to select specific categories, which one wishes to compare. The
generic menu is supplemented by a customized part, to specify profiling groups (different
profiling information), attributes or filtering options, which can differ for specific visualizations.
Performance information are also available on per job level via a job table with jobs grouped by
categories. Here, each single job can be selected and examined.

Different analysis types are referring to different wisualization methods, in which data
attributes, generic items of performance information, are shown. Attributes can be runtime,
resident memory, possibly lost memory or a more complex software metric. The Trend-Analysis,
figures out the progress of attributes cross versions or revisions and has been added to observe
changes in the general performance during the code evolution. Significant changes become
immediately conspicuous, but requires single attributes, e.g. one of many algorithms, to be
tracked. The Overview-Analysis is to show several attributes between two versions, platforms
or run configurations. Both, Trend and Overview, show entries with their statistical variance.
To get more precise information about the distribution of attribute values around their average
the Basic-Analysis can be used.

The visualization uses ROOT histograms which are created with pyRoot, the python interface
of ROOT, to allow the access from Django modules and Google Charts for visualization
performed on the client-side using javascript. The Basic-Analysis is using ROOT histograms
with the attributes dimension as x-axis and normalized about the amount of entries on the y-axis,
e.g. in figure 4. Visualizations like job tables, trends, treemaps or overviews are implemented
using Google Charts, for which data are preprocessed on the server-side.

3.8. Job distribution and triggering

To facilitate regular profiling in a series of equal tests to permit statistical evaluations, Jenkins
helps managing the job distribution to dedicated test hosts. The test configuration can be
prepared by creating generic parametrized jobs on the Jenkins UI. Also preprocessing, e.g.
compiling packages with specific compiler flags or using different revisions of packages within
a specific application version, can be conducted by a Jenkins job. Furthermore, it organizes
the inclusion of hosts and it prevents interferences between multiple jobs running on the same
machine by limiting job slots.

A cron-jobs like plugin in Jenkins can be used to schedule the triggering of profiling jobs
either by the release or build cycle. This ensures that from triggering to execution and data
collection no human intervention is necessary. This simplifies data collection and opens the way
to point out reliable and significant changes in the software profile.

3.4. Data collection

Data collection is performed by data handlers, which are defined for distinct types of profile
reports or which can provide additional information like a comment, a profile class or an AFS
path per job. There are two different kinds of routines to transfer collected information. One to

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013)

IOP Publishing

Journal of Physics: Conference Series 513 (2014) 052020

Overview
W V4410 -xB6_64.51 U440 586_64-5

EVENT_LOOP
BrunelSequencer
Physics

Figure 2. Overview analysis of
Brunel to get a fast impression of
attributes behavior to others and
cross versions, platform or differing
configurations (options).

Platform: x86_64-slc5-gcca6-opt

1,800
1,700 +
1,600

1,500

t

V44r4(60)

1,400

v44ro(32) va4r2(60) V4413p1(30)
V44r1(30) va4r3(119)

Figure 3. Trend analy-
sis (runtime [ms] x versions)
of Brunel to monitor changes
of specific attributes cross ver-
sions to observe the general
performance.

doi:10.1088/1742-6596/513/5/052020

EVENT_LOOP values

PN | (P IEFIIR 1/ | P N I (i
1550 1600 1650 1700 1750 1800 1850 1900

Figure 4. Shows runtime
distribution ([ms] per event)
using different math libraries.
(blue) Intel, (red) elder libm,
(green) updated libm of a new
glibc version.

save numbers or strings to be stored in the database and a second to upload files which contain
further performance information and could later become available from within the interface.
The post-processing of a profiling job must prepare parsable reports for the data handlers. The
LHCb PR Handler project contains the various data handlers to parse and collect the data.

3.5. Test cases

Use cases are important to trace performance changes back to the evolving algorithms. Test
cases are based on default use cases, and try to be a best approximation to the production usage.
Still, the sophisticated computing environments can influence test runs in a non-predictive non-
deterministic way, which hampers conclusions from regression analysis. Currently, the highest
priority is to find software related issues, that can be addressed or have to be taken into account
for upcoming decisions in resource allocation.

A few default cases for Brunel have been quickly evaluated, defined and are running
now on a regular basis after each successful nightly build. LHCb PR has demonstrated its
importance already by observing simple timing information obtained by the TimingAuditor.
The Overview-Analysis gives a general idea of how a single algorithm contributes to the overall
runtime in comparison to the others, like shown in figure 2. For time consuming algorithms,
significant changes become immediately clear by observing the trend information cross versions
as demonstrated in figure 3. After observing performance degradation, further tests can be
defined to use more precise profilers, like the IntelAuditor, for more details. One real example
shows the changes found in the external math library, as shown in figure 4. Such information
needs to be extracted before a release is done.

Unfortunately the HLT framework (Moore) can not simply be reduced to a few common
default cases, what makes it more difficult to trace back performance issues using a top-down
analysis.

The further complications are:

(i) The computing environment at the HLT farm is highly sophisticated with processes cloned
to save CPU time in initialization, whole node allocation and events coming from the buffer
manager.

(ii) Single or a few default cases, as required, are not available because of constantly changing
trigger configuration keys (TCKs), which define the algorithms involved.

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 052020 doi:10.1088/1742-6596/513/5/052020

The first problem cannot be addressed since varying runtime caused by the hardware or
network hampers performance analysis and the correlation to responsible source-code. The
second problem can partially be addressed by splitting one use case into multiple test cases and
focusing these cases on specific regions in the source-code. This also simplifies tracing back
performance issues to source-code locations and to provide separated development efforts with
information.

Finally the Overview-Analysis was adapted to be able to compare different run configurations,
to evaluate how separate test cases differ. This way included or excluded algorithms become
visible.

4. LHCb PR and beyond

4.1. Profiling accuracy

In the current state, the web-interface does not provide a resolution beyond algorithm level.
More detailed information is only accessible via the collected profile information stored on AFS.
The resolution of the web-interface is limited for several reasons.

(i) Systematic profiling with a top-down point of view on performance is to wvalidate
performance, but not to point to specific lines in code. Hence, LHCb PR currently
informs the developer groups about general performance and allows to examine how a
specific implementation contributes to the overall performance. Additionally, developers
are provided with profiles for detailed analysis for the given default use cases if this is
requested. Competing with the variety of good visualization and analysis tools of highly
sophisticated profilers would however not be a feasible approach.

(ii) Default cases are interesting to estimate the gemeral performance expectations, but not
to analyze the efficiency of uncommon use cases. Systematic profiling will not completely
replace customized profiling by single developers, since uncommon use cases are not covered
by the systematic profiling approach.

(iii) Regression analysis is gathering, e.g. in the case of thousands of algorithms of a Gaudi
application, already big amounts of data with ordinary information. One reason to limit
the amount of performance data is, because of the already massive amount of collected
data. Statistical evaluations are currently more in focus to provide reliable and precise
information. Additional limitations are given by the fact that the general performance
is characterized by a selection of measurements. Not every measurement will and can be
provided.

The higher precision leads already now to further issues, as for instance from the unpredictable
side effects of recent hardware features. They can influence runtime on an unreproducible way,
e.g. by using frequency scaling or automated over-clocking. On the one hand, these aspects
can now precisely be determined, but on the other hand, needs to be neutralized during regular
profiling to keep tests reproducible and to detect software performance anomalies.

4.2. Complementary information
Still, it could be reasonable to increase the resolution to function level. A call stack of functions
with corresponding runtime would enable us to see if algorithm were using lazy initialization
and therefor calling other algorithms first. This is important in particular for Gaudi, which
allows a flexible order in which algorithms are executed. E.g. tracking could be triggered by
the first algorithm which requests these information. Later on, tracks are only read by the same
call. This aspect makes algorithm vary in their runtime. This appears currently as unreasonable
change regarding performance of single algorithms.

Furthermore, gathering performance data could be extended by additional information.
Correlating specific physics analysis with runtime is frequently performed, but not included into

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 052020 doi:10.1088/1742-6596/513/5/052020

LHCb PR. Likewise different information, like software quality metrics, could be correlated to
runtime behavior. Subsequently it would be possible to estimate the impact of design decisions
and to find methodologies for new concepts. Open questions could be answered as knowledge
base for further developments. Questions like how exactly the call-stack depth causes more
cache-misses within a multi-threaded application that is sharing cache among threads, could
then be quantified by concrete numbers.

5. Conclusions

Using a flexible, extensible and customizable platform to collect and summarize profiling results
enables the LHCb collaboration to systematically compare profiles. The LHCb PR project
has already demonstrated to be highly valuable. Performance due to changing software and
advancing technology is partially examined and issues could be addressed. Since implementing
instrumentation is in many aspects already performed and since many profilers can be applied
for data collection and since Django and Jenkins is reducing the necessary work to set up
a performance monitoring system, the remaining effort is limited to setup a framework for
performance and regression analysis, the web application server and to define use cases in
collaboration with the developer teams. Still, improvements have to be discussed and put into
perspective, but due to the easy adaptivity of the web interface and testing framework, more
and more fields for application, like including software metrics, become tangible.

References
[1] Corti G, Cattaneo M, Charpentier P, Frank M, Koppenburg P, Mato P, Ranjard F, Roiser S, Belyaev I and
Barrand G 2006 “Software for the LHCb experiment” IEEE Transactions on Nuclear Science 53, nb. 3,
P.1323-1328
[2] Mato P and others 2001 “Status of the GAUDI event-processing framework” Computing in high energy and
nuclear physics P.3-7
[3] Hegner B, Mato P and Piparo D 2012 “Evolving LHC data processing frameworks for efficient exploitation of
new CPU architectures” Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC) IEEE
P.2003-2007
Frank M, Gaspar C, Herwijnen E, Jost B, Neufeld N and Schwemmer R 2012 J. Phys.: Conf. Ser. 396 012021
Mazurov A and Couturier B 2012 J. Phys.: Conf. Ser. 396 052054
Kruse D F and Kruzelecki K 2011 J. Phys.: Conf. Ser. 331 042014
“Django is a high-level Python Web framework”, url: https://www.djangoproject.com/
“Jenkins, An extendable open source continuous integration server”, url: https://www.jenkins-ci.org/

=

NS NI

