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Abstract. The ARM architecture is a power-efficient design that is used in most processors in
mobile devices all around the world today since they provide reasonable compute performance
per watt. The current LHCD software stack is designed (and thus expected) to build and run on
machines with the x86/x86-64 architecture. This paper outlines the process of measuring the
performance of the LHCb software stack on the ARM architecture - specifically, the ARMv7
architecture on Cortex-A9 processors from NVIDIA and on full-fledged ARM servers with
chipsets from Calxeda - and makes comparisons with the performance on x86_64 architectures
on the Intel Xeon L5520/X5650 and AMD Opteron 6272. The paper emphasises the aspects
of performance per core with respect to the power drawn by the compute nodes for the
given performance - this ensures a fair real-world comparison with much more ‘powerful’
Intel/AMD processors. The comparisons of these real workloads in the context of LHCb are
also complemented with the standard synthetic benchmarks HEPSPEC and Coremark.

The pitfalls and solutions for the non-trivial task of porting the source code to build for
the ARMv7 instruction set are presented. The specific changes in the build process needed
for ARM-specific portions of the software stack are described, to serve as pointers for further
attempts taken up by other groups in this direction. Cases where architecture-specific tweaks at
the assembler lever (both in ROOT and the LHCb software stack) were needed for a successful
compile are detailed - these cases are good indicators of where/how the software stack as well as
the build system can be made more portable and multi-arch friendly. The experience gained from
the tasks described in this paper are intended to i) assist in making an informed choice about
ARM-based server solutions as a feasible low-power alternative to the current compute nodes,
and ii) revisit the software design and build system for portability and generic improvements.

1. Introduction

As is the norm for each of the four major experiments based on the Large Hadron Collider (LHC)
at CERN, physics analysis of the data acquired by LHCDb is performed using a fairly complex
software stack that encompasses a wide range of computing goals including data parsing, event
triggering and event reconstruction. This software stack is a combination of individual programs
and libraries written by various physicists and engineers over different times and in different
teams. As a consequence, the resulting stack is fairly heterogeneous in terms of coding and
tool packaging conventions. With a partial software stack size of around 3.6 million lines of
code, porting and building this stack on a relatively unknown architecture(for high performance
computing) is a novel exercise and potentially rewarding in terms of the insights to be gained
about the behaviour of LHCb software on a non-x86 platform for the first time.
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The ARM architecture [1] is the most widely used processor architecture in all modern
mobile devices, from tablets to game consoles to cellphones. ARM-based processors are used
in billions of devices today, owing to their extremely low power consumption and favourable
licensing arrangments with embedded device manufacturers. Despite this overwhelming
popularity of ARM in the mobile device industry, it has so far not been considered in
high performance computing(HPC) fields, mainly due to the lower performance compared to
x86/x86_64 architectures, and power consumption being a lower priority for HPC outfits. This
situation is now slowly changing, with ARM-based processors becoming more performant, full-
fledged operating systems being released for ARM (this was not the case until as recently as
two years ago), and the foreseen introduction of ARM-based computing nodes into the server
market by mainstream server vendors [2].

Owing to the upsurge in the popularity of the ARM architecture, we consider it worthwhile
to investigate the claims of performance and power consumption, and to test the feasibility of
ARM-based servers at LHCb in particular. This paper shall, in addition to the central focus of
the effects of the architecture on the performance of ported LHCb software, also touch upon the
effects of non-conforming conventions and architecture-specific artefacts of existing code.

2. Cross-build toolchain and porting efforts

A toolchain is the first step in any software porting exercise, and to begin the porting of the LHCb
software stack to the ARM architecture, a complete cross-build toolchain was created in order
to minimise the turn-around time for multiple builds of the stack. The common tools for cross-
building included the GNU Compiler Collection(GCC) and associated packages, which in turn
were used in the initial stages of building the ancillary packages like Python, Boost, ROOT [3]
(for most computation libraries) and SQLite, COOL, CORAL (for database-related functions)
etc. After several iterations of building the toolchain, the configuration chosen contained GCC
4.7.2, Python 2.7.1, Boost 1.51 and ROOT 5.34.05.

Cross-building some standard prerequisites(e.g. ROOT) required further modifications.
Modern tool packaging and building includes so-called ‘system introspection’ which involves
running self-tests and sanity checks with the help of intermediary binaries generated and
executed on the fly during the build process. For software packages that are not designed /flexible
enough to be cross-compiled, this poses a problem as the intermediary binaries cross-compiled
for ARM targets fail to run, subsequently failing the sanity checks and triggering an abort of
the build process. As a workaround, a Linux kernel capability, viz. ‘binfmt_misc’ [4] was used to
pause the system introspection, ship intermediary binaries to an available external ARM node,
run the introspection tests and ship the results of these tests back to the build node to continue
the cross-compilation. The problems occuring during cross-compilation may also be avoided by
deploying virtual machines and ARM emulators.

The motivation for setting up cross-compilation was to reduce the turnaround time for
successive builds and to possibly add an ARM target to the regular LHCb software build
process. Further to the aim of cross-compilation for ARM targets on standard build nodes
at LHCb, the testing/benchmarking process (described in detail in Section 4) was also used
with the integrating test framework used at LHCb for standard production builds [5].

3. Building on multiple platforms

The complete cross-build toolchain has been tested with the versions of the individual
components frozen as mentioned in Section 2. For further tests, increasing in both complexity
and scale, native builds were performed on two full-fledged ARM operating systems bundled on
the following testbenches:



20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 052014 doi:10.1088/1742-6596/513/5/052014

(i) “CARMA” development kit (from SECO Ltd.): A “CUDA on ARM” platform [6] with the

following specifications -

CPU: NVIDIA Tegra 3, a quad-core ARM Cortex-A9 CPU running at 1.3 GHz

e RAM: 2 GB onboard

e GPU: NVIDIA Quadro 1000M with 2GB dedicated memory (not available for general
processing)

e OS: Ubuntu 11.04 for ARM with custom filesystem and soft-float kernel

(ii) Viridis server (from Boston Ltd.): An ARM-based “microserver” [7] with the following
specifications -

e CPU: Calxeda EnergyCore(TM) system-on-chip, with a quad-core ARM Cortex-A9
CPU running at 1.1 GHz

e RAM: 4GB per node (Upto 48 nodes per microserver)

e TDP: Claimed 5 watt per node maximum power requirement

e OS: Fedora 18 for ARM with hard-float kernel configuration

As mentioned earlier, the complete stack that has been natively built on multiple ARM
platforms at LHCb consists of around 3.6 million lines of code and is handled through a
‘homemade’ configuration management tool [8] designed for quick packaging and distribution
among different teams. These two factors contributed to the issues faced during the build
process, requiring hand-picking and modifying partial configuration parameters, patching several
pre-packaged tools, and in extreme cases, modifying the physics code in order to reach a working
build. The most prominent issues are mentioned below.

e Faulty code reflection in ROOT: Reflection features built into ROOT (Cintex, in particular)
contain highly architecture specific instructions (as was also pointed out by a team working
on ARM at CMS, another LHC experiment), and after reviewing proposed patches and the
assembly code, a workaround to disable particular reflection-specific portions of ROOT was
put in place, as we concluded that LHCb software (up to Brunel) would remain unaffected
by it.

e x86/x86_64-related sanity checks in physics code: Custom sanity checks on datastructure
sizes written into the physics code triggered crashes in Boost libraries, which were traced
down to certain LHCb packages and modified manually. This could be avoided in general
by not making assumptions about the architecture that the code would finally run on.

e Mismatch between compiler output and assembler: Fully functional object code could not
be generated from the assembler code that was emitted by the compiler that was custom-
built and tuned for ARM. Manual edits of the assembler code served as a workaround
intermediate step in the build process. The reasons for the mismatch are not clear, but it
is possible that the toolchain options may lead to such behaviour by the compiler.

e Unavailability of source code for certain computing libraries: Source code for proprietary
libraries like ‘NeuroBayes’ [9] was not available, hence LHCb software that used such
libraries had to be disabled during the build process.

4. Testing and benchmarking results

The successful build and full port of the LHCD software stack has been a good proof-of-concept
in itself for the potential of the ARM architecture to serve as an alternative for running LHCb
software, barring performance issues which were found as a result of extensive testing on different
platforms on different scales. Results are presented in this section, from benchmarks and tests
performed on the test platforms described in Section 3.

Two synthetic benchmarks were run on the different platforms: HEPSPEC (a version of SPEC
CPU2006 modified to reflect High Energy Physics(HEP) taskloads better) [10] and Coremark
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(a common open-source benchmark used in the embedded device industry) [11]. As can be seen
in Fig. 1, the per-core performance of the ARM processors is a factor of 5-7 times slower than
both AMD and Intel processors. It must be noted that the AMD and Intel processors tested are
server-grade, and were used in platforms with correspondingly high specifications (faster disks,
more RAM etc.), especially when compared to the CARMA development kit. However, in all
foreseen ARM-based microservers, the larger number of cores per server is not enough to cover
up the lower performance per core.

Performance per care for different processor types
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Figure 1. Per-core HEPSPEC performance of different platforms

A real-world benchmarking of the LHCb software stack is equally essential since the synthetic
benchmarks do not account for the particular requirements of running the LHCb software online.
For instance, much of the code is designed and run in a largely monolithic fashion, executes as
a single-thread program (hence limiting programs to run on a single core) and has a predictable
and fixed memory footprint. With this in mind, the LHCb online team runs multiple instances
of the same program in parallel, subject to available hyperthreading. To measure such workload
and usage, the LHCDb event reconstruction program ‘Brunel’ was chosen as a benchmark, and
processing time for 1000 events was decided as the comparitive measure across platforms. Event
data for reconstruction was taken from proton-proton collisions at LHCb in 2012 with 4000 GeV
beams.

As shown in Table 1, ARM-based processors on current ‘microservers’ are a factor 5 slower
on average than a high-performance Intel-based server. The performance of the CARMA
development kit is slower by a further factor of 4. The particularly low performance of the
CARMA kit may be attributed mainly to the absence of a hard-float kernel: this necessitates all
floating point operations to be trapped and re-routed through emulation of a hardware floating
point unit(FPU) in software. For intensive computing tasks such as Brunel, this affects the
overall processing time very strongly.
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Table 1. Processing time required for running Brunel on 1000 events.

CARMA dev. kit Boston Viridis Intel Xeon
CPU+Arch. Cortex-A9 (ARMv7) Cortex-A9 (ARMv7) Intel L5520 (x86_64)
Frequency (GHz) 1.3 1.1 2.27
No. of physical cores 4 4 8(x2 with hyperthreading)
Total RAM (GB) 2 4 48
Total time for Brunel ca. 10 hours ca. 2.5 hours ca. 0.5 hours

A second level of tests was performed by gradually scaling up the number of parallel Brunel
jobs on each compute node to load the entire machine. The observed results are shown in Fig. 2.
The performance of each individual job is clearly seen to deteriorate with increasing number
of parallel jobs on each compute node. This test was performed on a large scale with a fully
fitted Viridis microserver with 24 compute nodes. Each individual node remained unaffected by
loading jobs on adjacent nodes, although the scaling issues persisted within individual nodes.
This points to the RAM bandwidth not scaling well on ARMv7-based systems, as against linear
scaling with increasing physical cores observed on x86/x86_64-based systems.

+15%
+10%
T 35 7%
230 - _ _
= W Time for reconstructing
= 100 events (Brunel)
'8‘ 25 - B Time for Coremark
s
[eB]
£
i 20 -
15 -+ T
1 2 3 4

No. of concurrent jobs ——>

Figure 2. Adverse performance effects by running concurrent jobs on Viridis microserver nodes.

One of the requirements of an alternate processor architecture for computing in HEP is the
equivalence of the physics results obtained from all the computation. With correct usage of the
FPUs that are now standard on all ARM-based platforms, the final numerical physics results
were equivalent to those from x86 /x86_64-based platforms (within acceptable limits of precision).
A portion of the results of one of the Brunel algorithms is shown here in Fig. 3 as an example.
The minor differences may possibly be due to rounding errors and the different number of bits
in the architectures ARMv7 and x86_64 (32 bits and 64 bits respectively).
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“Cluster sum mean/effA* rms/emrA*

Match” ARMV7 x86_64 ARMV7 x86_64 ARMvV7 x86_64

#calos 81793 81793 98.784 98.784 51.547 51.547

#chi2 1.117573e+09 1.117574e+09  462.97 462.97 292.95 292.95

#links 2413906 2413907 2915.3 2915.3 3762.5 3762.5

#overflow 8979472 8979471 10845. 10845. 13205. 13205.

#iracks 84166 84166 101.65 101.65 82.226 82.266

Figure 3. Comparison of minor differences between results obtained on ARMv7 and x86_64.

5. Conclusions

The results of the build and benchmarking tests firstly show that ARM is a potential architecture
for the LHCD software stack, especially when the low power consumption of ARM processors
is taken into account. However, the current performance obtained on ARM-based computing
nodes shows that the processing power is not comparable to Intel/AMD processor-based nodes.
The low performance per core cannot be offset by the increased number of cores per node for
two reasons: firstly, the performance per core is a factor of 5-7 times lower, while the number
of cores per node is not increased in the same proportion; secondly, the memory bandwidth
available to each core does not scale well at all when the node is taxed with increasing number
of concurrent processes. These two factors lead to the conclusion that ARM-based servers are
not yet competitive with Intel/AMD-based servers in the high performance computing arena.

Physics results using the ARM-architecture are numerically correct (within acceptable
precision), which is a pleasant observation, considering the vastly different and reduced
architecture, both in terms of the number of bits (32) and the number of possible instructions.
For this reason, it is worth re-evaluating ARM processors when the AArch64 (64-bit)
architecture-based ARM processors make their way into mass produced servers.

A by-product of this exercise of rebuilding/porting the LHCb software stack to an as-yet
untested architecture has been the identification of systemic deficiencies/features in LHCb
software that are, knowingly or unknowingly, dependent on x86-specific features. The packaging
and release mechanism for the various tools (Gaudi, Brunel, Phys, Hlt etc.) can also be
further improved to be more architecture-agnostic, thus requiring fewer modifications to multiple
configuration settings to enable successful builds on newer architectures like ARM. Indeed,
considerable progress has already been made in this direction by LHCb, where we are now in
the process of migrating away from an in-house configuration management tool to CMake, thus
enabling neater integration and more flexibility for multiple architectures.
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