
The Telescope Array Middle Drum fluorescence

detector simulation on GPUs

Tareq Abu-Zayyad1, Telescope-Array Collaboration
1Physics Department, University of Utah, Salt Lake City, UT 84112

E-mail: tareq@cosmic.utah.edu

Abstract. In recent years, the Graphics Processing Unit (GPU) has been recognized and
widely used as an accelerator for many scientific calculations. In general, problems amenable to
parallelization are ones that benefit most from the use of GPUs. The Monte Carlo simulation of
fluorescence detector response to air showers presents many opportunities for parallelization. In
this paper we report on a Monte Carlo program used for the simulation of the Telescope Array
Fluorescence Detector located at the Middle Drum site which uses GPU acceleration. All of the
physics simulation from shower development, light production and atmospheric attenuation, as
well as, the realistic detector optics and electronics simulations are done on the GPU. A detailed
description of the code implementation is given, and results on the accuracy and performance
of the simulation are presented as well. Improvements in computational throughput in excess
of 50× are reported and the accuracy of the results is on par with the CPU implementation of
the simulation.

1. Introduction
The Telescope Array (TA) detector was designed to study cosmic rays at energies of ∼ 1018 eV
and higher. TA comprises three fluorescence detectors (FDs) [1, 2] and a large surface detector
[3]. A cosmic rays particle interacts near the top of the atmosphere and generates an extensive air
shower (EAS). Charged particles in the EAS ionize the Nitrogen molecules in the air and cause
them to emit fluorescence light. FDs are built using light collectors (mirrors), photomultiplier
tubes (PMTs) for camera pixel elements, and high-speed electronics which allows them to form
an image of the EAS development through the atmosphere. In addition to fluorescence photons,
Cerenkov photons are also produced by the high-energy shower particles, and contribute to the
detected signal.

Fluorescence detectors rely on Monte Carlo (MC) simulations to calculate the detector
aperture, and to check the validity and accuracy of event selection and reconstruction procedures.
In addition, event reconstruction typically employs an inverse Monte Carlo fitting method.
Calculating the detector response to a single shower (one “event”) is reasonably fast, on the
order of a few seconds. However there is a need to generate a large number of showers in
order to understand the detector and the data. The event reconstruction procedure using the
inverse MC method is more time consuming than event simulation since the response to many
trial showers has to be evaluated. It could take up to a few weeks/months to generate and
reconstruct enough MC to produce a physics result. Therefore, accelerating the data processing
is a highly desirable and useful development.

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 052001 doi:10.1088/1742-6596/513/5/052001

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1

General-Purpose computing on Graphics Processing Units (GPGPU) has been a topic
of research for a decade now but has really gained momentum in the scientific computing
field over the past five years, after the introduction of CUDA (Compute Unified Device
Architecture)[4, 5] by NVIDIA. The introduction of a “high” level interface to the GPU hardware
made programming GPUs accessible to a wider audience. The main drawback to using CUDA
is that not all computers are equipped with GPUs from NVIDIA. For this reason, the program
described in this paper was written in such a way that it would run with or without GPU
acceleration.

GPGPU is most useful when dealing with computational problems that can easily be
parallelized. The simulation of the FD response to one shower involves performing a large
number of independent calculations that can be executed in parallel, making it ideal for GPU
acceleration. Also, each event is simulated independently of other events, again ideal for GPUs.
The simultaneous calculation of the detector response to multiple events improves the efficiency
and utilization of the GPU resources.

The paper is organized as follows: Section 2 gives an overview of the simulation physics.
Section 3 gives an overview of the MC program flow, along with the steps required to simulate
one event. Section 4 describes the basic concepts of the CUDA programming model as it
relates to the problem at hand. Section 5 introduces the MC program design considerations and
implementation details. Finally, in section 6 we present results of some sample simulations and
discuss performance.

2. FD Simulation Physics
The calculation of an FD response to an air shower requires modeling a number of physical
systems and processes:

• The atmosphere:

– Pressure and density profiles as a function of altitude: typically radiosonde data.
– Ozone layer: using a table of ozone partial pressure versus height.
– Aerosols: a simplified model of aerosols distribution and light scattering properties.

• Shower development:

– Longitudinal development: parametrization of shower size as a function of atmospheric
depth and in terms of shower age.

– Lateral distribution of shower particles: parametrization based on the NKG [6, 7]
function.

– Energy deposit: based on Corsika [8] simulations.

• Light production:

– Air fluorescence: emission by nitrogen molecules excited by shower electrons.
– Cerenkov light emission by high-energy charged particles: “direct Cerenkov”.
– Scattered Cerenkov light: Rayleigh and aerosols scattered into the FOV of the detector.

• Light propagation:

– Attenuation due to Rayleigh/aerosols scattering and ozone absorption

• Light detection:

– Detector geometry: position and orientation.
– Detector optics: mirror shape and area, shadowing by camera and support structure.

• Detector response:

– PMT response: quantum efficiency and 2D response profile.
– Electronics signal processing for a single channel.
– Trigger logic: event formation.

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 052001 doi:10.1088/1742-6596/513/5/052001

2

3. FD Simulation Procedure
The MC program is invoked to simulate a set of shower events. The first step of the simulation is
to initialize the detector configuration and set the relevant physics models based on user input.
Once initialization is done, the requested set of events is generated either serially (CPU) or
in parallel (GPU). Finally, the generated parameters for all simulated showers, along with the
detector response for those showers which trigger the detector, are written to an output file.

The following bullets outline the flow of the MC program:

• Parse user input; set detector configuration, atmospheric parameters and physics models.

– If using the GPU the copy initialization data to GPU and initialize RNG on GPU

• Start data set simulation: Either randomly generate shower profile/track geometry for all
showers in the set, or read in the shower profile/track geometry from an input file. This is
done on the CPU.

• Reduce the data set (on the CPU) by checking whether the generated shower track is in
the field of view of any FD telescope. If not, the event is set aside, as no trigger can be
expected.

• If running on the CPU then process each shower event sequentially, otherwise copy the
reduced set to GPU memory and run the shower simulation in parallel. To accomodate
arbitrary size event sets, the simulation is done in “batches”:

– use a batch size of one on the CPU, and ∼768 on the GPU depending on available
memory on the GPU card.

– if using the GPU then copy the detector response for the current event batch back to
main memory

– at the end of processing of a batch, output event data is written to file.
– repeat until all events are simulated.

An individual shower simulation proceeds as follows:

• Subdivide the shower-track into segments: The track is divided into 832 track segments of
equal atmospheric slant depth steps, ∼1-2 g/cm2 each depending on shower zenith angle.

• Generate Shower Profile: Evaluate the shower size (number of shower electrons) and related
variables at the center of each segment.

• Calculate fluorescence and Cerenkov light production: This involves calculating the shower
energy deposit, and the fluorescence yield. Note also, that Cerenkov light refers both to
local production at each track segment and the accumulated Cerenkov beam as the shower
develops. The latter is calculated in a separate step in order to make best use of the GPU.

• Light propagation and collection: With a track segment acting as a point source, calculate
the wavelength dependent atmospheric attenuation along the path to the observing
telescope. Also, account for geometrical and wavelength dependent collection efficiency
of the detector elements.

• Prepare electronics simulation: Evaluate the time duration for which the electronics
simulation needs to be done and add the sky noise background photons contribution to
the PMT signals during this time interval.

• Perform ray tracing: Ray trace photons from the track segment through the telescope optics
and determine if a PMT is hit.

• Electronics simulation: The PMT signal is filtered and amplified. Also, check for a “tube
trigger” which occurs when the signal voltage crosses a certain threshold.

• Trigger logic: Check the numbers and pattern of triggered tubes to see if the conditions
for a “mirror trigger” are satisfied. If one or more mirrors trigger that defines a detector
trigger.

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 052001 doi:10.1088/1742-6596/513/5/052001

3

4. CUDA Programming model
The reader is referred to [9] for a full introduction to CUDA. Here a few key concepts that are
relavent to this paper will be introduced.

A computer program written with CUDA executes on the CPU, the host, and treats the
GPU, the device, as a coprocessor. The program flow is controlled by code that runs on the
CPU. The GPU is invoked from the host by calls to special functions, kernels, identified in
the source code by the keyword __global__. Kernels can call device functions, identified by
the keyword __device__. These keywords (function qualifiers) are introduced as extensions
to the C programing language and are interpreted by the CUDA compiler (nvcc). A function
can be defined to be executed on the CPU and on the GPU by giving it the name qualifier
__host__ __device__.

The CUDA parallel execution model is referred to as single-instruction multiple-thread
(SIMT). A group of 32 threads, collectively referred to as a warp, execute a single instruction,
each thread on its own private data. Best performance is obtained when all threads in a warp
execute the same instruction. CUDA defines a thread hierarchy as follows:

• Threads are organized in thread blocks. The thread identifier is a 3 component vector
allowing for 1D, 2D, or 3D blocks with up to 1024 threads.

• A collection of blocks, up to 65k, make up a grid

The user specifies the total number of thread-blocks to run, and the size and dimensionality
of each block. A kernel launch is requested for a grid of thread blocks. The management of all
the threads: scheduling, resource allocation, etc. is handled by the hardware.

5. Program design considerations
One of the main design considerations was that the program would run on any computer, with
or without a GPU. The build system, based on CMake, compiles the program to run on the
CPU by default. However, it can be invoked with an option WITH_CUDA=ON in which case the
program is built with GPU acceleration. Where appropriate a preprocessor variable is defined
to select the CPU (host) path or the GPU (device) path.

To simplify code maintenance in the long term and to minimize the chance for the CPU and
GPU code to be modified separately and inconsistently, most calculations are performed inside
functions defined to run on both the CPU and the GPU. This is accomplished by using the
CUDA constructs __host__ __device__ and making sure that the functions can be compiled
on the more restrictive environment of a GPU (e.g. GPU code can not use C++ STL classes).
If the program is built on a computer that does not support CUDA, care was taken so that
the above keywords are replaced by white-spaces and the source code then looks like standard
C++ code. The MC also has support for the CERN ROOT framework [10]. Many classes
in the code library can be loaded into a ROOT session for interactive calculations. A small
complication arose when adding ROOT support, in that the rootcint preprocessor would not
ignore the keywords __host__ __device__ (undefined outside of CUDA). It did however accept
(and ignore) the symbol __HOST_DEVICE__, and this symbol was used as a workaround.

Another consideration is that while some GPUs support half-speed double precision
calculations (as compared to single precision), many consumer grade video cards only support
1/8 or 1/12 double precision speeds. On the CPU we always use double precision. To get the
same function to run in double precision on CPU and single precision on GPU, C++ templates
are used throughout the program. The accuracy of the single precision calculation was verified
by comparing the results from the GPU to double precision calculations done on the CPU. The
code sample shown in listing 1 illustrates the basic structure of the source files and classes.

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 052001 doi:10.1088/1742-6596/513/5/052001

4

Listing 1. model class design: all classes sport
the same basic design as shown here for a 3-vector
class

#ifdef CUDACC
define HOST DEVICE host device
#else
define HOST DEVICE
#endif
namespace utafd {
// Vector3 class definition
template <typename real t>
class Vector3 {

public:
HOST DEVICE

Vector3() : x (0), y (0), z (0) {}
//...

HOST DEVICE
inline real t dot(const Vector3& v2) const;
//...
protected:
real t x , y , z ;
};
// Vector3 class Implementation
//...
template <typename real t>

HOST DEVICE
real t Vector3<real t>::dot(const Vector3& v2) const
{

return x ∗v2.x + y ∗v2.y + z ∗v2.z ;
}
//...
}

Listing 2. different code paths

namespace utafd {
template <typename real t>

HOST DEVICE inline
real t random uniform(unsigned long long∗ rng x=0,

unsigned int∗ rng a=0)
{
#if !defined(CUDA ARCH) // host (cpu) path

double r;
rangen (r); // numerical recepies ran2()
return (real t) r;

#else // device (gpu) path
return rand MWC co(rng x, rng a);

#endif
}
}

At the top of listing 1, the preprocessor
section starting in #ifdef makes it possible
to compile the source code on a machine
without CUDA. The template paramater
real t is replaced by either float or double
depending on where the code is executed.

Random number generation is done
differently on the CPU and the GPU. On
the CPU we use a routine from Numerical
Recipes [11] to generate a single sequence
of pseudorandom numbers. On the GPU,
each thread gets its own sequence using
a MWC generator [12]. The actual
implementation of the MWC generator
used in this program was developed by
the authors of a program described in
[13]. Wrapper functions are used to hide
the different RNG implementations, for
example the function shown in listing 2 can
be called from a host function, omitting the
parameters x and a. On the device, these
parameters specify the sequence unique
to the calling thread. The preprocessor
variable __CUDA_ARCH__ is used to select
the section of the code to be included in
the function when compiled for the CPU or
GPU.

5.1. Service Classes

Service Classes provide properly initial-
ized data and functions describing the geom-
etry, atmosphere, physics options, and de-
tector configuration used in the simulation.
As already mentioned the MC can be run on
either the CPU or the GPU and templates
are used to allow running in single or dou-
ble precision. This means that four copies
(CPU/GPU, single/double) of an object of
the service class type is created at the start
of the program. For each case we define a
class, e.g. PhysicsService, which provides
the required functionality. Any function or
object which needs access to physics data or
needs to call a physics function will do so by
first getting the active PhysicsService object
as illustrated in the code listing 3. The CPU
double version of the service class is initialized based on user input and copies (one float on CPU,
and two float/double on GPU) of it are created and copied to GPU if required.

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 052001 doi:10.1088/1742-6596/513/5/052001

5

Kernel tpb nb
generate track segments 32 NE/tpb
shower profile 64 NE ×NS/tpb
shower photons (step 1) 32 × 32 NE ×NS/tpb.x
shower photons (step 2) 32 NE
mirror photo-electrons 64 NME ×NS/tpb
prep electronics 32 NME/tpb
init electronics 256 MLM
ray tracing 64 MLM × 4
electronics 256 MLM

Table 1. Kernel configuration: tpb = threads per block, nb = number of blocks per launch,
NE = total number of shower events, NS = number of track segments, NME = total number of
mirror-events, MLM = maximum number of mirrors per launch.

Listing 3. service class example: An object of
type ShowerTrack needs to call a service class
to perform a calculation which depends on the
chosen coordinate system and on the externally
supplied atmospheric paramaters.

#include ”utafd coordinates.h”
#include ”utafd atmosphere.h”
namespace utafd
{

//...
template <typename real t>

HOST DEVICE
void ShowerTrack<real t>::set track ends(...)
{

real t dummy(0);// used to resolve float or double
const CoordinatesService<real t>& utafd coord =
service::coord::utafd coord(dummy);
const AtmosService<real t>& utafd atmos =
service::atmos::utafd atmos(dummy);
//...
int icode = utafd coord.track ends(...);
//...
real t deltax = utafd atmos.xslant(...);
//...
}
}
// ... in utafd atmosphere.cu ...
// under namespace utafd::service::atmos

HOST DEVICE
const AtmosService<double>& utafd atmos(double)
{
#if !defined(CUDA ARCH)

return utafd atmos d; // host
#else

return ∗utafd atmos d dev; //device
#endif
}

The kernel launch configuration is modi-
fied for each part of the calculation in order
to achieve best performance. The implemen-
tation for the TA MD site simulation is sum-
marized in table 1. Due to the limited amount
of memory on the GPU card, 1 GB in our case,
the maximum number of shower events simu-
lated at one time is limited to 768 events. The
electronics simulation requires 8MB per mir-
ror and is therefore limited to 32 mirrors at a
time with multiple launches for the whole set.

6. Results and Performance
6.1. Execution speed comparison
A test simulation of the TA Middle Drum
detector was done to measure the relative
performance of the program. A simulation
of a set of 1500 events, 1019eV showers, was
run on both the CPU (Intel Q8300, 2.50GHz)
and GPU (NVIDIA GTX 460, 763MHz). The
total run times were 6min 16s (CPU) and 6.1
sec (GPU), for an overall speedup of about
60×. The output of the simulations is not
identical since the RNGs used are different,
however the results were consistent. As an
example, the total number of triggered events:
310 vs. 308 with about 300 triggered events
being the same shower events. NVIDIA
profiler “nvpp” was used to examine where
the simulation time was spent. The most time
was spent doing ray tracing and second was
the electronics simulation. Ray tracing was
sped up by reducing code divergence (doing
more computation) on the GPU, but code

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 052001 doi:10.1088/1742-6596/513/5/052001

6

divergence was still the cause of inefficiency. The electronics simulation initialization was also
affected by code divergence in the calculation of the Poisson random deviate which uses a “do
while()” loop. The memory access pattern was efficient with the inverted layout of the 2D
arrays.

Acknowledgments
The Telescope Array experiment is supported by the Japan Society for the Promotion of Science
through Grants-in-Aid for Scientific Research on Specially Promoted Research (21000002)
“Extreme Phenomena in the Universe Explored by Highest Energy Cosmic Rays”, and the Inter-
University Research Program of the Institute for Cosmic Ray Research; by the U.S. National
Science Foundation awards PHY-0307098, PHY-0601915, PHY-0703893, PHY-0758342, and
PHY-0848320 (Utah) and PHY-0649681 (Rutgers); by the National Research Foundation of
Korea (2006-0050031, 2007-0056005, 2007-0093860, 2010-0011378, 2010-0028071, R32-10130);
by the Russian Academy of Sciences, RFBR grants 10-02-01406a and 11-02-01528a (INR), IISN
project No. 4.4509.10 and Belgian Science Policy under IUAP VI/11 (ULB). The foundations of
Dr. Ezekiel R. and Edna Wattis Dumke, Willard L. Eccles and the George S. and Dolores Dore
Eccles all helped with generous donations. The State of Utah supported the project through
its Economic Development Board, and the University of Utah through the Office of the Vice
President for Research. The experimental site became available through the cooperation of
the Utah School and Institutional Trust Lands Administration (SITLA), U.S. Bureau of Land
Management and the U.S. Air Force. We also wish to thank the people and the officials of
Millard County, Utah, for their steadfast and warm support. We gratefully acknowledge the
contributions from the technical staffs of our home institutions and the University of Utah
Center for High Performance Computing (CHPC).

References
[1] Abu-Zayyad T, Aida R, Allen M, Anderson R, Azuma R et al. 2012 Astropart.Phys. 39-40 109–119 (Preprint

1202.5141)
[2] Tokuno H, Tameda Y, Takeda M, Kadota K, Ikeda D et al. 2012 Nucl.Instrum.Meth. A676 54–65 (Preprint

1201.0002)
[3] Abu-Zayyad T, Aida R, Allen M, Anderson R, Azuma R et al. 2012 Nucl.Instrum.Meth. A689 87–97 (Preprint

1201.4964)
[4] https://en.wikipedia.org/wiki/CUDA

[5] http://www.nvidia.com/object/cuda_home_new.html

[6] Greisen K 1956 Prog. Cosm. Ray Phys. 3 1
[7] Kamata K N J 1958 Prog. Theor. Phys. Suppl. 6 93
[8] Heck D, Schatz G, Thouw T, Knapp J and Capdevielle J 1998
[9] http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_

Guide.pdf

[10] http://root.cern.ch

[11] William H Press e a 1992 Numerical Recipes in FORTRAN 2nd ed (New York, NY, USA: Cambridge
University Press)

[12] G M 2003 J. Mod. Appl. Stat. Meth. 2 213
[13] http://code.google.com/p/gpumcml/

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 052001 doi:10.1088/1742-6596/513/5/052001

7

