
Fuzzy Pool Balance: An algorithm to achieve a two

dimensional balance in distribute storage systems

Wenjing Wu1 Gang Chen1

1
IHEP, 19B Yuquan Road, Beijing, China 100049

E-mail: wuwj@ihep.ac.cn

Abstract.The limitation of scheduling modules and the gradual addition of disk pools in

distributed storage systems often result in imbalances among their disk pools in terms of

both disk usage and file count. This can cause various problems to the storage system

such as single point of failure, low system throughput and imbalanced resource utilization

and system loads. An algorithm named Fuzzy Pool Balance (FPB) is proposed here to

solve this problem. The input of FPB is the current file distribution among disk pools and

the output is a file migration plan indicating what files are to be migrated to which pools.

FPB uses an array to classify the files by their sizes. The file classification array is

dynamically calculated with a defined threshold named Tmax that defines the allowed pool

disk usage deviations. File classification is the basis of file migration. FPB also defines the

Immigration Pool (IP) and Emigration Pool (EP) according to the pool disk usage and

File Quantity Ratio (FQR) that indicates the percentage of each category of files in each

disk pool, so files with higher FQR in an EP will be migrated to IP(s) with a lower FQR

of this file category. To verify this algorithm, we implemented FPB on an ATLAS Tier2

dCache production system. The results show that FPB can achieve a very good balance in

both free space and file counts, and adjusting the threshold value Tmax and the correction

factor to the average FQR can achieve a tradeoff between free space and file count.

1.Introduction

The Nowadays mass storage systems are mostly designed in a distributed way, comprising none

or several head nodes storing metadata and a set of disk pool nodes storing the real data. While the

distributed disk pool nodes bring a lot of benefit such as load balance and aggregated IO throughput, at

the same time, various reasons such as file counts and size deviation, data migration to tape systems,

garbage collection of removed data can lead to an imbalanced data distribution among disk pools. In

this paper we mainly address the imbalance caused by file counts and size deviation. Typical reasons

causing so include: 1) the limitation of the storage system scheduling module. The scheduling module

decides what files are stored in which disk pools. In theory it can take several factors into account in

making such a decision, i.e. disk usage, current disk activities, file counts in each disk pool, but in

practical systems, these scheduling modules tend to be designed in a simpler way and takes less factors

into account, therefore, over time in a production system, the imbalanced distribution will happen. 2)

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 042053 doi:10.1088/1742-6596/513/4/042053

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1

Disk pool nodes can be added gradually as the production storage system scales up in its capacity, so old

disk pool nodes have much less free space than the new ones.

This imbalanced free space distribution usually triggers the scheduling module to direct new IO

operations to the new pool nodes which can cause various harms to the storage system such as 1) single

point of failure on the newly added pool node. 2) Imbalanced system and IO load among disk pool

nodes, which will reduce the throughput of the whole system.

Furthermore, the limitation of scheduling module can also result in an imbalanced file counts

distribution among disk pools which can also be harmful such as 1) Pool nodes with a larger number of

files take a much longer time to do initialization. 2) It causes file system even operating system level

crisis, i.e. it over uses inode [1] quota. 3) In some implementation of the storage system, it consumes a

lot of memory to initiate a disk pool with a large number of files. 4) Disk pools with much larger

number of file counts have the tendency of serving more IO operations than the other ones, thus it can

cause low system resource utilization and uneven distribution of system load [2].

One solution to this problem is to migrate the files among disk pools to achieve a more even file

distribution. Some storage system may already have a module that can move files around based on the

free space of all disk pools. This will address one aspect of the imbalance, but not to the imbalanced file

counts. Therefore we propose an algorithm named Fuzzy Pool Balance (FPB) in this paper, which aims

at achieving a two-dimensional balance, namely both free space and file counts among disk pools by

migrating as less files as possible.

The rest of this paper is organized in the following way: Section 2 addresses the related work;

Section 3 describes the general idea of FPB; section 4 defines the key conceptions in FPB, including file

classification and its array calculation; section 5 describes an implementation of FPB and shows its

effect on a production system; section 6 concludes.

2. Related Work

Data migration is a popular concept in distribute storage systems and it improves the data service

quality. Traditionally, data migration is triggered by the change of the data access model. The goal of

traditional data migration is to use the minimum steps to move data from the current distribution to a

desired new distribution according to the users’ data access model change. In this case, both current and

future data distribution are known, and the algorithms focuses on calculating the minimum steps that are

required to finish this migration. Paper [3] [4][5] addressed these cases.

However, the case discussed in this paper is different from the traditional cases. Compared to the

traditional cases, it has the following features:

1) The data migration is triggered by the imbalanced data distribution concerning both free space

and file counts among disk pools instead of users’ data access model change.

2) It knows only the current data distribution and the goal is to calculate a migration plan that can

migrate the current data distribution to a future distribution to achieve a balance of both free space and

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 042053 doi:10.1088/1742-6596/513/4/042053

2

file counts. The future distribution is unknown and fuzzy, and it requires migrating as less files as

possible instead of imposing to use absolute minimum steps, so there is no NP hard problem.

Therefore, we propose the new algorithm FPB to solve the case discussed in this paper.

3. FPB Introduction

FPB is a new algorithm that aims at achieving a balanced distribution of both free space and file

counts among disk pools. It takes the current file distribution as input, with several restraints imposed to

get a migration plan which describes what files moving from which source disk pools to which

destination pools.

The file distribution can be described in the following way: each disk pool is associated with a list

of files stored in this disk pool. In this list, it includes the file counts of this disk pool and the size of each

file.

As the volume and counts of files addressed here are both large, a key restraint to the migration

plan is to have as less file migration among disk pools as possible. To achieve the goal of having a

two-dimensional balanced disk pools, two other restraints are also imposed in FPB. 1) The free space

deviation among all disk pools should not exceed a threshold value Tmax. 2) File counts are adjusted

towards balance among all disk pools during the process of free space balancing. And among these

two goals, the free space balance has higher priority.

Based on the above goal and restraints, FPB uses a classification array STAT to categorize all the

files by their sizes, and categories are also the objects of migration. Disk pools are also labeled as either

Immigration Pools (IP) or Emigration Pools (EP), and in FPB, files will be migrated from EP into IP

by categories. The restrict definition of IP and EP will not guarantee the file counts balance of each

file category, but this can avoid excessive files moving around among the disk pools, and eventually

within all categories, a balance of both file counts and disk usage can be achieved. Also FPB is

designed to work on disk pools with a large amount of files (over thousands) with diverse sizes, so it

may not work appropriately in the small scale such as a few files in each disk pools.

4. Notions and Definitions in FPB

4.1 Basic Definitions

To better describe the algorithms of FPB, the following notions and variables are defined:

Saf: the average free space of all disk pools

IP (Immigration Pool): Disk Pool whose free space is higher than Saf

EP (Emigration Pool): Disk Pool whose free space is lower than Saf

Tmax: a threshold value for free space deviation among disk pools, in other words, of all disk pools,

the free space differences between any given two disk pools should not exceed Tmax

FQR (File Quantity Ratio): for a certain file category, the percentage of file counts in one disk

pool compared to the total file counts in all disk pools. FQR can be calculated as

fqrij =
Nfij

Nfkj
k=1

N

å
, Where fqrij

is the FQR of file category j in disk pool i, Nfij is the file counts of category j in disk pool i, N is the total

number of disk pools.

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 042053 doi:10.1088/1742-6596/513/4/042053

3

Fqa: the average FQR of all disk pools

Fqi (Immigration FQR): a threshold value, File Categories in IP with FQR below Fqi will

immigrate

Fqe (Emigration FQR): a threshold value, File Categories in EP with FRQ above Fqe will

emigrate

Usually,

 Fqi = Fqa + Rin

Fqe = Fqa + Rout

Where Rin and Rout are correction values, and - Fqa <=(Rin, Rout) <= Fqa.

4.2 File Classification

In order to achieve the file accounts balance among disk pools, FPB puts files into different

categories by their sizes. FPB uses the array STAT to classify files and the elements of STAT are

different file sizes in ascending order. The initial values of STAT are defined such as [10K 2M 20M

100M 800M 1G 3G], and a file category is marked by the tow neighboring elements except for the edge

elements, i.e., 10K marks the category of files whose sizes are less than 10KB;[2M 20M] marks the

category of files whose sizes are between 2M and 20M;3G marks the category of files who sizes are

greater than 3GB.

In FPB, the interval that marks the category is used to estimate the total file size of this category in

a disk pool, so the granularity of STAT will affect the accuracy of the estimation, therefore affect the

free space deviation between disk pools. In FPB we define a threshold value Tmax for the free space

deviation, so STAT can be calculated mathematically according to the value of Tmax. to ensure the free

space deviation not exceeds Tmax..

The following formulas show how STAT is calculated and expanded into finer grain.

In STAT, for a given interval i [Sti-1，Sti], we estimate the size of a file in this category as

Sest =
Sti + Sti-1

2 , so the deviation between Sest and the real file size Sfj is 22

11
1








 ii

iest
ii

i

StSt
StSSf

StSt
St

j

this is equal to
|Sf

j
-Sest |£

Sti-Sti-1

2 . The total estimated size of all files is , where Nf is the total

file counts in [Sti-1，Sti]. And the real total size of all files is
Srt = Sf j

j=1

Nf

å
.

As we define the deviation between Set and Srt as Svar , we get

Svar =| Set - Srt |= | Sf j -Sest |
j=1

Nf

å £
(Sti -Sti-1)´Nf

2
£ b

 (1)

In the interval i [Sti-1，Sti], we also define a threshold value β which limits the deviation between

the real and estimated total file size in this interval. Given the current number of interval in STAT is M,

we get

 (2)

Combine (1) and (2), whence

 (3)

NfSS estet 

M

Tmax

M

TNfStSt
S ii max1

var
2

 


 ）（

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 042053 doi:10.1088/1742-6596/513/4/042053

4

Furthermore, we assume we need to insert n intervals into array STAT, so n-1 elements need to be

inserted into STAT. And we assume in sub intervals 1, 2…n, the respective file counts are n1, n2… nn

and the respective deviations are Svar1 , Svar2 … Svarn , so based on (3), we get

Svar1 =
(Sti - Sti-1)´n1

2n
£ b

(4.1)

Svar2 =
(Sti -Sti-1)´n2

2n
£ b

 (4.2)

…

Svarn =
(Sti -Sti-1)´nn

2n
£ b (4.n)

Sum up (4.1) ~ (4.n), we get

n
n

njStSt

S

n

j

iin

j

j 















2

)(
1

1

1

var

,where
b =

Tmax

M + n (5)

Combine (3) and (5) , we get

 and

Whence

2

max

var

2

max

2

var

max

var

42 T

MS

T

S

T

S
n







(6)

And the step for each sub interval is

Ss t e p=
S ti - S ti-1

n (7)

4.3 File Migration

.

Figure 1: File Migration Flow Figure 2: FPB Pseudo Code

As show in figure 1, disk pools are categorized into EP and IP according to their free space, and

files will only be migrated from EPs into IPs. In an EP, categories whose FQR are higher than Fqe will

nM

n

n

S






var 0
max

var

max

var2 






T

MS

T

nS
n

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 042053 doi:10.1088/1742-6596/513/4/042053

5

emigrate a certain amount of its files into IPs. In the same sense, in an IP, categories whose FQR are

lower than Fqi will immigrate files of the same categories from the EPs within its immigration capacity

quota. For example, in figure 1, in EP1, the FQR of category A and C exceeds the threshold value, so

respectively a certain amount of files of category A will be emigrated into IP1 and IP3, and a certain

amount of files of category C will be emigrated into IP1 and IP2.

To store the information of the migration plan, we use a four-element data structure mresult {ep, ip,

file_category, move_no}.

Figure 2 shows the pseudo code describing the algorithm of file migration

5. An Implementation and Test Results

5.1 FPBM

Based on the FPB algorithm, we implemented the Fuzzy Pool Balance Manager (FPBM) on the

Mass storage system dCache [6]. FPBM includes 4 basic components: 1) CM (Classification Manager)

which generates the STAT array based on the file distribution among all disk pools and categorize files

based on their sizes; 2) BM (Balance Manager) which generates a migration plan based on the file

classification, pool categories and all threshold values. The migration plan describes what files to be

moved from its source pools to the destination pools; 3) FM (File Mover) which executes the migration

of the files among disk pools, and this component relies on the specific commands of the storage system;

4) MM (Migration Monitoring) which monitors the rates of file migration and provides basic statistics

of the migration. Among all these 4 components, only FM is specific to storage systems, because it

relies on the system specific commands to move the files. In dCache, the admin interface [7] can be

used to migrate the files among disk pools.

5.1 Test Resutls

FPBM is used on a production dCache system of an ATLAS Tier2 site AGLT2 [8]. The system

includes 11 disk pools of 120TB storage space. Both the free space and file counts among the disk pools

are imbalanced as a new disk pool is added to the system. Before the migration, 10 of the 11 disk pools

has less than 10GB free space respectively and the new disk pool has 11TB free space. The threshold

values are set as: Tmax=1000GB, Fqe = Fqa -0.15, Fqi = Fqa +0.15.

As shown in Figure 5, after FPBM, the free space is evenly distributed among the disk pools with

each disk pool having 1.0~1.1TB free space, and the deviation of this is way below the threshold value

Tmax (1000GB). As shown in Figure 6, the FQR is also adjusted in the disk pool. Take a particular pool

for example, for the category [38M 44M], the FQR is drawn closer to Fqa by the migration process

which means the file counts are balanced among the disk pools at the same time. However in some disk

pools, the FQR does not change, that is because of the definition of EP and IP. For example, in an EP,

even if the FQR of a certain category is lower than Fqi, it still won't immigrate any files, so the FQR of

this category remains the same. The same applies to IPs with categories whose FQR are higher than Fqe.

However, in the result of this empirical example, we only measured the changes of FQR of each file

category which could indirectly indicate the change of file counts distribution, but not measure

directly the change of file counts of each disk pool. This needs to be improved in the future.

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 042053 doi:10.1088/1742-6596/513/4/042053

6

Figure 5: Balance of Free space Figure 6: Balance of File Counts

6. Conclusions

FPB introduces the idea of size based file classification and calculates the classification array

mathematically according to the threshold value. FPB also uses the notion of FQR to adjust the file

counts while migrating the capacity to achieve a two dimensional balance in terms of free space and file

counts among disk pools. The results of applying it on a production storage system prove its effect and

also indicate that adjusting the threshold value Tmax and the correction factor to the Fqa can achieve a

tradeoff between free space and file counts among disk pools: smaller Tmax results in a finer grain of

classification array STAT which leads to better free space but worse file counts distribution among disk

pools; Fqi and Fqe being closer to Fqa leads to better file counts but worse free space distribution among

disk pools. However, in FPB, the priority is to balance the free space, and at the same time, FPB helps to

adjust the file counts in the condition of moving as less files as possible.

References

[1] Understand UNIX / Linux Inodes Basics with Examples, http://www.thegeekstuff.com/2012/01/linux-inodes/,

2012

[2] Wenjing Wu, Research on Performance of Grid Storage System over 10Gb Networks, doctoral dissertation,

2010. p. 64-p83

[3] Golubchik, L., et al., Data migration on parallel disks: Algorithms and evaluation. Algorithmica, 2006. 45(1):

p. 137-158.

[4] Hall, J., et al. On algorithms for efficient data migration. 2001: Society for Industrial and Applied Mathematics

Philadelphia, PA, USA.

[5] Anderson, E., et al., An experimental study of data migration algorithms. LECTURE NOTES IN COMPUTER

SCIENCE, 2001. 2141: p. 145-158.

[6] Ernst M, Fuhrmann P, Gasthuber M, et al. dCache, a distributed storage data caching system[C]//Proceedings

of Computing in High Energy Physics. 2001, 1: 2.

[7] dCache admin interface, http://www.dcache.org/manuals/Book-1.9.5/start/intouch-admin.shtml, 2013

[8] AGLT2 dCache Monitoring, http://head01.aglt2.org:2288/

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 042053 doi:10.1088/1742-6596/513/4/042053

7

