
DDM Workload Emulation

R Vigne1,2, E Schikuta1, V Garonne2, G Stewart2, M Barisits2, T
Beermann2, M Lassnig2, C Serfon2, L Goossens2 and A Nairz2 on
behalf of the ATLAS Collaboration
1 University of Vienna, Austria
2 CERN, Geneva, Switzerland

E-mail: ralph.vigne@cern.ch

Abstract. Rucio is the successor of the current Don Quijote 2 (DQ2) system for the
distributed data management (DDM) system of the ATLAS experiment. The reasons for
replacing DQ2 are manifold, but besides high maintenance costs and architectural limitations,
scalability concerns are on top of the list. Current expectations are that the amount of data
will be three to four times as it is today by the end of 2014. Further is the availability of more
powerful computing resources pushing additional pressure on the DDM system as it increases
the demands on data provisioning. Although DQ2 is capable of handling the current workload,
it is already at its limits. To ensure that Rucio will be up to the expected workload, a way to
emulate it is needed. To do so, first the current workload, observed in DQ2, must be understood
in order to scale it up to future expectations. The paper discusses how selected core concepts
are applied to the workload of the experiment and how knowledge about the current workload is
derived from various sources (e.g. analysing the central file catalogue logs). Finally a description
of the implemented emulation framework, used for stress-testing Rucio, is given.

1. Introduction
Data management and provisioning in the ATLAS experiment [1] has been done by Don Quijote
2 (DQ2) [2] since 2006. Since that time not only the amount of data has increased but also
the performance of applications depending on distributed data provision (e.g. the ATLAS
Production and Distributed Analysis System (PanDA) [3]). DQ2 currently manages about
150 petabytes of physics data which are spread over more than 120 sites all around the globe
and provides access to this data for around 800 active users. Although DQ2 is able to manage
today’s workload, it is almost at its limits. Various adaptions and changed requirements over
the last years did compromise its basic design, resulting in reduced scalability like no ’native’
file-level transfers, no meta-data data discovery,

As today’s predictions expect the workload of DDM to be three to four times of today’s by
the end of 2014, DDM becomes a pressing issue to address within the experiment. To avoid
DDM becoming the bottleneck for future applications, Rucio [4] was implemented. Its design
respects the experience gained over the last 7 years with DQ2 (e.g. user behaviour, application
requirements, . . .) with a strong focus on scalability. To verify its scalability, a workload
emulator was developed to validate its performance at multiples of today’s load.

In Section 2 we discuss how knowledge about today’s workload in DQ2 was derived and how
it was utilised to model the emulated workload. Section 3 illustrates how the used emulation

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 042048 doi:10.1088/1742-6596/513/4/042048

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1

DQ2

Central File
Catalogs Logs Traces

Hadoop Cluster

Use Case Pattern Mapper

Figure 1. Analysing DQ2 workloads Figure 2. Workload per application

framework was implemented. Section 4 concludes the results gained so far and provides a quick
overview about future work.

2. Profiling DQ2 Workload and Requirements
In order to gain reliable data about Rucio’s scalability, we first needed to understand today’s
workload. We therefore analysed DQ2 log data since the beginning of 2013.

DQ2 produces around 100GB1 of ASCII log data per day, distributed over multiple log files.
Due to this huge amount of data, we decided to use our Hadoop cluster to analyse the log data.
The cluster consists of 10 nodes with 24GB of RAM and 3TB HDD and 4 nodes with 48GB of
RAM and 5TB HDD. We aggregated the log data into chunks of one hour and grouped it by
account, application identifier, and method (representing one API call), calculating how
often a method was called and what its mean response time was for each resulting group. Figure
2 illustrates the derived workload distribution over the different applications.

Next we assigned a pattern of API calls, each representing distinct use cases, that are executed
by the various applications and users. The Use Case Pattern Mapper applies these use case
pattern definitions to the data derived from the analysis, resulting in information about how
frequently a use case is executed. The separate steps of the workload analysis are outlined in
Figure 1.

This way we have been able to match 61% of DQ2 workload to known use cases executed by
the provided applications. Table 1 summarises the results of the use case pattern matching and
further indicates that besides 32% of the workload we were either unable to identify or considered
irrelevant, we ended up having 7% as remaining ‘noise’ (i.e. unassigned API calls of included
accounts). We assume that this is related to (a) retries of failed calls and (b) spontaneous or
random access by users.

Last we deduced additional target numbers for each use case to validate the generated
workload in a semantic way. To do so, we identified various performance metrics to verify
against the production system. As this is very specific for each separate use case, and space in
this paper is scarce, we only provide one example.

We use PanDA [3] as an example use case, as it causes one third of the overall workload and
is one of the main applications utilising the DDM infrastructure. It is a pilot based workflow
manager and is in charge of distributed data analysis of ATLAS data on behalf of the users.

For this use case we identified the number of created elements (e.g. datasets, replicas) as
useful indicators. They (a) allow to check for semantic correctness and (b) are easy comparable
with the production workload. Due to the timestamp applied to data in both systems (DQ2 and
Rucio), these indicators further allow to check if the workload is properly distributed over time.

1 about 25GB from Central File Catalog Logs representing API calls, and about 75GB from Traces representing
data transfers between storage sites.

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 042048 doi:10.1088/1742-6596/513/4/042048

2

Table 1. Workload distribution over different applications

Application ID Workload Share API Calls Mapped to Use Cases

pandasrv 31 % 440 K 80 %
deletion-agent 25 % 360 K 100 %
site-services 8 % 110 K 100 %
dq2clients 3 % 36 K 90 %
tzero 0.07 % 1 K 100 %
Identified API Calls 68 % 947 K 61 %

Undefined 18 % 250 K -
Others 15 % 200 K -

Table 2. Nominal target numbers for the PanDA use case per hour

Element Type User Analysis Group Analysis Production T1 Production T2

Dispatched Tasks 800 82 12 12
Computed Jobs 17K 3.6K 10K 10K
Containers 400 82 32 32
Output Datasets 800 90 64 64
File Replicas 34K 7.2K 24K 16K

DIS Datasets - - - 2.6K
DIS Files - - - 12.6K

SUB Datasets - - - 1.2K
SUB Files - - - 16K

Table 2 provides a detailed overview of what and how many elements are created by PanDA per
hour, based on the information provided by DQ2.

For an example how the data provided in Table 2 is represented in the emulation framework
see the plot Overall Created Elements in Figure 4.

3. Emulation Framework
In this section we introduce the emulation framework developed for the purpose of scalability
tests for Rucio. It is intended to be running continuously and provides valuable information
about the systems performance during the daily development process of Rucio. An architectural
overview of the emulator and its related infrastructure is illustrated in Figure 3.

The Emulator dispatches use cases in real-time to a distributed job queue (Gearman Server
[5]). In order to explore the limits of Rucio it allows to adapt the scaling factor of the workload
at runtime. For example, Figure 4 shows the emulation framework running twice the nominal
load. As we wanted to apply new use cases in an easy way, it is enabled to invoke generic Modules
on demand. Inside each module, multiple (correlated) Use Cases can be implemented. All use
cases inside the same module share the same Context object, allowing them to persist/exchange
information i.e. to be correlated. Further each use case can define an input method, providing
access to the context object. This method is intended to acquire relevant data from the context
object to properly execute the use case. The use case method itself will be executed by any

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 042048 doi:10.1088/1742-6596/513/4/042048

3

C
o
n
te

x
t

Emulator

Module

Use Case

Gearman Server

Gearman Worker

Host One Host Two

Host N

Dispatch

Output

R
U

C
IO

Host Three

Node.js with
stats Module

Graphite
UI (HTTP)

<
<

 J
o
b
 D

a
ta

 >
>

<< Job Results >>

Input
Use Case Main Method

Figure 3. Overview of the emulation framework architecture

available (Gearman) worker. Additionally an output method is supported to store resulting data
from a use case in the context object.

Each module may further define one setup and shutdown method. They can be used to
prepare/post-process the context of the module. For example, loading and persisting the context
object helps to immediately pick up the emulation where it was stopped before. In case of use
cases having a long ramp-up time like PanDA, with a ramp-up time of approximately 20 hours,
it is therefore possible to stop and restart without a significant loss of time. Releasing a new
patch set or performing some maintenance work will not cause former progress to be lost and
can therefore be done more frequently, complimenting agile development processes.

As we wanted to schedule the workload up to very high frequencies (multiple kHz), the
emulator was designed to scale easily. During startup, the aggregated frequencies of use cases
defined in the same module are used to distribute the modules over the available processes (i.e.
CPU cores). Each process then triggers the execution of a use cases ’input - dispatch - output’
sequence in the right frequency.

Our tests, executed on a 2.3GHz quad-core CPU, showed that this multiprocess/multi-
threaded architecture allows for around 1.2 kHz per process/core resulting in 4.8 kHz over-all
frequency for simple use-cases with asynchronous workers.

Gearman Server and Gearman Worker [5] are part of a framework to distribute jobs over
several worker nodes either in a synchronous or asynchronous way. The Gearman Server
implements a First-In-First-Out queue where clients dispatch their job descriptions to. As
soon as a Gearman Worker becomes available, the Gearman server assigns the next pending
job to it and waits for the worker to report the outcomes of the job execution. If the results
indicate a successful execution, the job description is removed from the queue, otherwise it is
reassigned to a different worker for a retry.

This framework is very suitable for the emulator as it scales easily. If the queue size becomes
too long, one can simply start new workers on any available host to provide additional computing
power. Utilising this framework allows the emulator to use all available resources of the host
system for scheduling instead of blocking them to wait for e.g. long running database operations
to be finished.

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 042048 doi:10.1088/1742-6596/513/4/042048

4

Figure 4. Example plots from Graphite when emulating two times the nominal Load

The Monitoring Infrastructure is the last part of our emulation framework. We decided to use
Graphite [6] for this purpose. Graphite is designed to store several data points over time and
provides a web-based user interface. Furthermore it supports the composition of plots with a
set of time series which are used to illustrate the systems performance metrics in real-time. In
Figure 4 two example plots are provided.

To minimize IO demands and increase performance, Graphite implements a fixed-size round-
robin-database with the granularity of at least one second (1 Hz). Due to this 1 Hz granularity
we decided to use Node.js [7] as an aggregator in front of it. Incoming data is now aggregated in
memory and regularly flushed to Graphite, e.g. 1 Hz where data gets persisted on disk. For this
application, saving only aggregated data is fine, as analysis is mostly done with the granularity
of one hour, and it additionally helps reducing computation time and save disk space.

4. Conclusion and Future Work
These three components (Emulator, Gearman framework, and Graphite+Node.js) together
provide a highly scalable and powerful framework to keep a constant, and realistic workload
on Rucio. The detailed information about the run-time behaviour of the system is of great value
while optimising Rucio for production.

In the next step we will use the emulation framework to elaborate different strategies for
applications like PanDA to utilise the provided functionality by DDM like requesting a file
transfer. Doing so allows not only optimisations for Rucio but also for other applications
depending on data provisioning in the ATLAS experiment.

5. References
[1] CERN 2002 The ATLAS Experiment http://atlas.ch/ URL http://atlas.ch/

[2] Branco M, Zaluska E, de Roure D, Lassnig M and Garonne V 2010 Concurrency and Computation: Practice
and Experience 22 1338–1364

[3] Maeno T, De K, Wenaus T, Nilsson P, Stewart G a, Walker R, Stradling a, Caballero J, Potekhin M and
Smith D 2011 Journal of Physics: Conference Series 331 072024 ISSN 1742-6596

[4] Garonne V, Stewart G a, Lassnig M, Molfetas A, Barisits M, Beermann T, Nairz A, Goossens L, Barreiro
Megino F, Serfon C, Oleynik D and Petrosyan A 2012 Journal of Physics: Conference Series 396 032045
ISSN 1742-6588

[5] Ewart J 2013 Instant Parallel Processing with Gearman (Packt Publishing Ltd) ISBN 978-1783284078
[6] Graphite - Scalable Realtime Graphing URL http://graphite.wikidot.com/

[7] Teixeira P 2012 Professional Node. js: Building Javascript Based Scalable Software (Indianapolis, Indiana,
USA: John Wiley & Sons, Inc.) ISBN 978-1118185469

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 042048 doi:10.1088/1742-6596/513/4/042048

5

