20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 042042 doi:10.1088/1742-6596/513/4/042042

Analysis and improvement of data-set level file
distribution in Disk Pool Manager

Samuel Cadellin Skipsey!, Stuart Purdie?, David Britton!’
Mark Mitchell!, Wahid Bhimji®, David Smith*

!Department of Physics and Astronomy, University of Glasgow, G12 8QQ, UK
2University of St Andrews, School of Computer Science, KY16 98X, UK

3University of Edinburgh, School of Physics & Astronomy, James Clerk Maxwell Building,
The Kings Buildings, Mayfield Road, Edinburgh EH9 3JZ, UK

4European Organization for Nuclear Research (CERN), CH-1211 Geneéve, Switzerland

E-mail: samuel.skipsey@glasgow.ac.uk

Abstract. Of the three most widely used implementations of the WLCG Storage Element
specification, Disk Pool Manager[1, 2] (DPM) has the simplest implementation of file placement
balancing (StoRM doesn’t attempt this, leaving it up to the underlying filesystem, which can
be very sophisticated in itself). DPM uses a round-robin algorithm (with optional filesystem
weighting), for placing files across filesystems and servers. This does a reasonable job of
evenly distributing files across the storage array provided to it. However, it does not offer
any guarantees of the evenness of distribution of that subset of files associated with a given
“dataset” (which often maps onto a “directory” in the DPM namespace (DPNS)). It is useful
to consider a concept of “balance”, where an optimally balanced set of files indicates that the
files are distributed evenly across all of the pool nodes. The best case performance of the round
robin algorithm is to maintain balance, it has no mechanism to improve balance.

In the past year or more, larger DPM sites have noticed load spikes on individual disk
servers, and suspected that these were exacerbated by excesses of files from popular datasets on
those servers. We present here a software tool which analyses file distribution for all datasets
in a DPM SE, providing a measure of the poorness of file location in this context. Further, the
tool provides a list of file movement actions which will improve dataset-level file distribution,
and can action those file movements itself. We present results of such an analysis on the UKI-
SCOTGRID-GLASGOW Production DPM.

1. Introduction

By definition, a distributed filesystem must implement a mechanism for allocating individual files
to one or more of the underlying storage volumes abstracted by it. Design of the file distribution
mechanisms may be constrained by one or more requirements; maintaining even distribution of
files across all volumes, maintaining proportional use of the space in each volume, managing
IO and network load on individual servers, and so on. The Disk Pool Manager[1, 2] (DPM)
Storage Element implements a simple file distribution algorithm, in which a static list is used to
sequence the allocation of incoming files to disk server filesystems. The static list defaults to an
unweighted round-robin list of all filesystems, but administrators can provide weightings (which
result in duplicate entries for those filesystems in the list) in order to (for example) distribute
more files to larger storage volumes. While this mechanism does evenly distribute files across

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
BY of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Published under licence by IOP Publishing Ltd 1

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 042042 doi:10.1088/1742-6596/513/4/042042

the available storage, it does not guarantee good properties for any higher level grouping on
those files. For example, many VOs group their files into “datasets”, representing a complete
set of files associated with a particular analysis or production run on the grid. Generally, future
work will be performed on an entire dataset, rather than one or two files considered in isolation.
Storage Elements cannot be aware of the existence of datasets, nor the particular memberships
of such higher-order groupings that any incoming files have. It is therefore not clear a priori that
any given dataset will be evenly distributed across filesystems in a DPM (or any other storage
element). (This problem is much more significant for file-oriented distributed filesystems: block-
distributed systems, such as HDFSJ[3], or striped systems, such as Lustre[4, 5], spread per-file
load over multiple servers, effectively smearing out hotspots from higher-order inhomogeneities.)
Contributory evidence for the case that not all datasets are well distributed on DPM disk
servers is represented by the load “brownout” phenomenon that large DPM installations appear
to suffer from to various extents. Sites in the UK and elsewhere with large fractions of their
storage resource dedicated to the ATLAS VO experience occasional load “brownouts”, in which
a small fraction of their disk servers experience instantaneous request loads high enough to
effectively overload their network connection (figure 1 shows an historical example of this as
captured by monitoring at UKI-SCOTGRID-GLASGOW). The fact that this load only affects
a minority of disks at any time suggests that the affected disk servers have more interesting files
(and thus a larger share of the files in the currently hot datasets at the site) than the others.

Disk server load (1min) dynamic range

250.0

Load

150.0

100.0

[i LM A e e
10:00 12:00 14:00 16:00 18:00 20:00

Figure 1. Example of single-disk anomalous catastrophic load due to unbalanced dataset
distribution (taken from monitoring[6] at UKI-SCOTGRID-GLASGOW, August 2012). Pink
line is a single disk server’s reported load (all other disk servers are plotted, but are barely visible
on this scale).

In the absence, at present, of effective load management tools for any of the popularly used
data transfer protocols in DPM, a reasonable approach is to attempt to analyse the distribution
of datasets at a site in order to “smooth” the load out over the entire ensemble.

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 042042 doi:10.1088/1742-6596/513/4/042042

1.1. Dataset Identification

In order to rebalance at the dataset level, we must identify the files in each dataset. For many
experiments, this is easy, as the dataset is identified with the logical directory containing a set of
files. This approximation is used for the analysis presented in this paper, and we use “directory”
interchangeably with “dataset” for the remainder of the text.

For ATLAS’ Rucio[7] system, this identification is broken (Rucio abstracts its internal logical
file system at the storage element layer, storing files in a hierarchical hashed directory structure
instead). In this case, we must query Rucio itself to determine the datasets and their contents.
The Rucio DMLite plugin[8] could be used for this purpose, and is being investigated by the
authors for future extension of the tool.

2. Defining ‘unbalanced’

Ideally, we want a measure of balance that gives a progressive indicator, and thus allows us to
pick out the ‘least balanced’ directories. This has the advantage of enabling work to be focused
on the areas where it will have largest effect. The measure used is to determine the number
of files in the most subscribed filesystem for any given DPNS directory, and divide that by
the mean; where the mean is obtained by taking the total number of files in the directory and
dividing by the number of filesystems containing files that are members of it. This measure
ignores cases where there are empty filesystems - for our purposes, we are concerned with the
peak load, so empty filesystems are only a problem as a side effect - it’s the over loaded ones
that matter. (Other metrics, of course, can replace the described measure, allowing the rest
of the engine to balance according to different requirements, such as redistributing files to even
out disk usage across disk servers of varying age.)

This figure of merit is a dimensionless number, and is mostly independent of the number of
files in the directory. In practice, it is poorly conditioned (varies widely for a small change)
for directories with a small number of files; but they are much less of a problem, so it’s not
unreasonable to ignore the balance of directories with fewer files than some threshold (where
20 was used in the implemented code). Figure 3 is a representation of such an analysis on the
UKI-SCOTGRID-DPM production DPM.

Unfortunately, when applied to the task of perfectly balancing the file distribution, this
measure produces results which are hard to tune, especially as the number of moves increases.
Instead of pursuing this approach, we wrote code to find the unbalance factor for the Nth worst
directory. This gives a way to gradually improve the balance on the storage, starting from the
worst case, and do it in a reasonably smooth way. The idea is to launch the code with a target
of 2 (i.e. considering issues up to the second worst case); let it move files to make the worst as
balanced as the second worst, and then iterate with increasing thresholds until file distributions
are improved to our satisfaction (the stopping criterion being the number of iterations we wish
to select - there was no set cutoff limit applied). This iterative algorithm has the additional
advantage that single iterations can be run periodically to maintain the balance of a DPM
filesystem, with reduced overhead compared to periodically scheduling a complete rebalancing.

2.1. Building work lists

Now that we can identify directories with balance problems, we can pick out the worst, and
rebalance those. This is done by building a list of all files to be moved, and then passing that
off to a rate-balancing engine. The first algorithm tried here was to do random assignment of
moves between least and most subscribed filesystems.

Simulation (running the balancing algorithm against a database copied from the production
DPM, but not performing the actual file moves themselves, then post-hoc generating a graph
of the new file counts) showed that this appeared to produce reasonable results. In rare cases
where the random assignment process left datasets in less than perfect balance (due to statistical

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 042042 doi:10.1088/1742-6596/513/4/042042

variation), the next run of the balancer resolves the issue. Such events are expected to be very
rare, although they may crop up more with frequent execution in the maintenance case.

@irectory Nam@

Dataset file list
Data
d’:?tr/b

Moves list

Database Rate

Moves list :

engine

Figure 2. Indicative flowchart of implemented algorithm.

2.2. Rate-balancing engine

This ensures that no more than some specified limit of transfers is executed simultaneously. As
part of this process, we also shuffle the order of moves slightly so that the same source and
destination are not adjacent in the move list repeatedly, reducing load spikes from the move
process. This part is written to be modular, but algorithms other than the initial design have
not been developed.

3. File Placement in Reality
Application of the work lists to a real world DPM instance was hindered by the fact neither
DPM nor DMLite expose “raw” file placement in their APIs, especially the Python and Perl
versions. While you can trigger creation of a file replica at any time, there is no way to specify
the destination (instead, destination selection passes through the same round-robin selection
that all file creation operations use).

At the time of submission, this functionality was an active feature request against DPM [9]
. By the time of publication, the first iteration of the functionality had been provided (via the
davix interface), but there was no time to produce useful results.

4. Conclusions

The problem of efficient file distribution in distributed filesystems has dimensions beyond the
simple problem of equalising capacity use across member servers. In the case of DPM, we have
identified correlations between asymmetric filesystem load and poor distribution of files within a
given dataset. We have presented a candidate algorithm for improving this distribution, almost
orthogonal to the actual distribution of numbers of files on each disk. While this algorithm could
not be tested on real systems, due to pending functionality in DPM, the initial simulated results
do produce improved evenness of file distribution at the dataset order. In addition, the provided
algorithm is sufficiently modular that it could be applied to balancing of files on other metrics

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 042042 doi:10.1088/1742-6596/513/4/042042

16000 rrrrrrrrrrrre 37

14000 |
12000 |
10000 |
8000 - 1 19

Frequency

6000 -

4000 -

2000 -

Number of filesystems spanned by dataset

0
00 10 20 30 40 50 60 70 80

N files on filesystem for dataset / Ideal value of N

Figure 3. Stacked histogram of normalised dataset distribution (per filesystem), coloured by
total number of filesystems in a given dataset’s span. Value 1.0 corresponds to a filesystem
with the precisely 1/n of the files in the dataset, where the span is n. It is clear that for small
spans (purple), the distribution is good, while as the span increases, the distribution quickly
becomes wide and unbalanced. For some datasets, a small number of filesystems exist with up
to 7.4 times the average number of files, although their number is small enough that they are
not visible on this graph directly. The chosen range of the x axis indicates the actual length of
the long tail.

(from the lowest order, “number of files per server”, to potentially more esoteric measures, such
as disk server bandwidth, or topological concerns). We expect to be able to produce real life
tests in the coming months as targeted replication becomes available in the davix interface.

References
[1] Frohner A et al 2010 J. Phys.: Conf. Ser. 219 062012 doi:10.1088/1742-6596,/219/6,/062012
[2] The DPM Project site. https://svaweb.cern.ch/trac/lcgdm/wiki/Dpm
[3] HDFS Design Documentation. http://hadoop.apache.org/docs/current/hadoop-project-dist /hadoop-
hdfs/HdfsDesign.html#Large Data_Sets
[4] Lustre OpenSFS Community http://lustre.opensfs.org/
[5] Wang F et al 2009 “Understanding Lustre Filesystem Internals” http://users.nces.gov/”
fwang2/papers/lustre_report.pdf
| Crooks D et al 2014 “Monitoring in a grid cluster” This proceedings.
[7] The Rucio project http://rucio.cern.ch
] Van Dongen D 2013 http://cds.cern.ch/record /1602854 /
| Tracking ID for DPM Targeted Replication API https://its.cern.ch/jira/browse/LCGDM-1007

