
ATLAS Replica Management in Rucio: Replication

Rules and Subscriptions

M Barisits1,2,3, C Serfon3, V Garonne3, M Lassnig3, G Stewart3, T
Beermann3, R Vigne3, L Goossens3, A Nairz3 and A Molfetas4 on
behalf of the ATLAS Collaboration
1 University of Innsbruck, Innsbruck, Austria
2 Vienna University of Technology, Vienna, Austria
3 CERN, Geneva, Switzerland
4 University of Melbourne, Melbourne, Australia

E-mail: martin.barisits@cern.ch

Abstract. The ATLAS Distributed Data Management system stores more than 150PB of
physics data across 120 sites globally. To cope with the anticipated ATLAS workload of
the coming decade, Rucio, the next-generation data management system has been developed.
Replica management, as one of the key aspects of the system, has to satisfy critical performance
requirements in order to keep pace with the experiment’s high rate of continual data generation.
The challenge lies in meeting these performance objectives while still giving the system users
and applications a powerful toolkit to control their data workflows. In this work we present the
concept, design and implementation of the replica management in Rucio. We will specifically
introduce the workflows behind replication rules, their formal language definition, weighting
and site selection. Furthermore we will present the subscription component, which offers
functionality for users to proclaim interest in data that has not been created yet. This
contribution describes the concept and the architecture behind those components and will show
the benefits made by this system.

1. Introduction
The ATLAS[1] collaboration creates and manages vast amounts of data. Since the detector
started data taking, Don Quijote 2 (DQ2)[2], the collaboration’s distributed data management
system, is responsible for managing Petabytes of experiment data on over 750 storage end points
in the Worldwide LHC Computing Grid[3]. DQ2 organizes, transfers and manages not only the
detectors RAW data, but also the entire lifecycle of derived data products for the collaboration’s
physicists. This is done in accordance with the policies established in the ATLAS Computing
Model.

As laid out in [4], it is very difficult to extend DQ2 to satisfy new high-level use cases and
still cope with the load the system is facing today. For this reason and to cope with the load of
the next decade, the next generation of the ATLAS DDM system, called Rucio, was introduced.

In this article we describe a new way of managing replicas, called replication rules. This
concept, which is implemented in Rucio, gives the system users great flexibility to control their
replica placement workflows, while at the same time it gives the system more freedom to save

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 042003 doi:10.1088/1742-6596/513/4/042003

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



resources. We also introduce Rucio subscriptions, which offer the user a way to define replica
placement for future data.

The paper is organized as follows: In Section 2 we describe the high-level concept of Rucio
and give a short overview of its architecture. Section 3 continues to introduce replication rules,
their architecture and workflow as well as the evaluation of the component. Section 4 does the
same for subscriptions. Finally we conclude in Section 5.

2. Rucio
This Section describes the general concept of Rucio as well as giving an overview of the
architecture of the system.

2.1. Concept
A Rucio account is the unit of assigning permissions in Rucio. An account can represent
individual ATLAS users, a group of users or an organised production activity. Every account has
a data namespace identifier called scope. The scope is used to partition the data namespace, to
easily separate production data from individual user data. In general, accounts can only write to
their own scope, but privileged accounts (like production accounts) can be authorized to write
into foreign scopes. Credentials, such as username/password, X509 certificates or Kerberos
tokens are used to authenticate with Rucio. Such credentials can map to multiple accounts, for
example, when a user is authorized to do operations on behalf of a group account.

The ATLAS Collaboration creates and administers large amounts of data which are physically
stored in files. For Rucio, these files are the smallest operational unit of data. Files, however,
can be grouped into datasets and moreover, datasets can be grouped into containers. We
consequently refer to files, datasets or containers as data identifiers (DID), as all three of them
refer to some set of data. A data identifier is a tuple consisting of a scope and a name. In Rucio
each (scope, name) tuple is unique. Datasets as well as containers may be overlapping in the
sense that their constituents may be part of other datasets or containers.

To address and utilize storage systems in Rucio, the logical concept of the Rucio Storage
Element (RSE) is introduced. An RSE is a container of physical files (replicas) and is the unit
of storage space within Rucio. Each RSE has a unique name and a set of attributes describing
properties such as protocols, hostnames, ports, quality of service, storage type, used and available
space, etc. Additionally, RSEs can be assigned with meta attributes to group them in many
logical ways, e.g. all Tier-2 RSEs in the UK, all Tier-1 RSEs, etc. Quotas assigned to accounts
specify how much data volume an account can use on a specific RSE or a set of RSEs.

The replica management concept in Rucio is based on replication rules and subscriptions.
Replication rules define the workflow for replication of existing data, while subscriptions are a
concept which defines how the system manages future data. Both concepts and components will
be explained in Sections 3 and 4.

2.2. Architecture
The Rucio software stack (see figure 1) is separated into three horizontal layers and one
orthogonal vertical layer. It is implemented in Python 2.6.

The Rucio clients layer offers a command line client for users as well as application
programming interfaces which can be directly integrated into user programs. All Rucio
interactions are transformed by the client into https requests which are sent to the REST[5]
interface of the Rucio server. Consequently, external programs can also choose to directly
interact with the REST API of the server (e.g. by libcurl).

The Rucio server layer connects several Rucio core components together and offers a
common, https based, REST API for external interaction. After a request is received by
the REST layer, the authorization component checks the used credentials. If permitted,

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 042003 doi:10.1088/1742-6596/513/4/042003

2



Rucio Clients

Rucio Server (REST API and Core Components)

Rucio Daemons

Rucio 
Storage 
Element

(RSE)

Database

Account Authentication Identifiers Locks

Meta Permission Quota Transfer

Rules Subscriptions Scopes

Conveyor
(Transfers)

Judge
(Rules)

Reaper
(File Deletion)

Transmogrifier
(Subscriptions)

Undertaker
(Dataset 
deletion)

Site

Site

Site

Figure 1. Overview of the Rucio architecture (the components featured in this article are
highlighted)

the permissions of the account to execute the given request are checked by the permission
component. If allowed, the request is passed to the responsible core component for execution.
Rucio core components are allowed to communicate with each other, as well as with the Rucio
storage element abstraction.

The Rucio Storage Element (RSE) abstraction layer is responsible for all interactions
with different Grid middleware tools which interact with the Grid storage systems. It effectively
hides the complexity of these tools and combines them into one interface used by Rucio. The
abstraction layer is used by the clients, the server as well as the Rucio daemons.

The Rucio daemons are used to asynchronously operate on requests made by users or by
the Rucio core. This can be transfer requests, executed by the Conveyor, expired replicas or
datasets deleted by the Reaper or Undertaker as well as rule-re-evaluations and subscriptions
performed by the Judge and Transmogrifier.

The Database is used to persist all the logical data as well as for transactional support.
Only the Rucio server or daemons directly communicate with the database. Rucio uses
SQLAlchemy[6] as an object relational mapper for performance as well as for development
reasons.

3. Replica Management in Rucio – Replication Rules
Replica management in Rucio is based on replication rules. The general idea of replication rules
is that instead of defining a specific destination for data to be replicated to, the user expresses
the intention behind the replication request. Consequently, the system is able to interpret those
requests and choose the appropriate destinations while preserving system resources, like storage
space and network bandwidth. Replication rules can be as specific as specifying a single RSE.
To give a more specific example: a user wants to replicate a dataset to two Tier-2 RSEs in the
United Kingdom. The user can create a replication rule with 2 copies and the RSE expression
’tier=2&country=uk’. The string ’tier=2’ represents the set of all Tier-2 RSEs and the string
’country=uk’ the set of all RSEs in the United Kingdom. The set-union operator ’&’ is used
to create the set-union of both sets (The RSE expression language will be discussed in detail
in section 3.1). Thereupon Rucio picks two ideal destinations based on existing and queued
replicas.

A replication rule can be created for any data identifier in Rucio, independent of the scope
or creator of the data identifier. When specified on a dataset or container, the rule will affect
all contained datasets or containers. Subsequent changes to these datasets or containers will be
considered by the replication rule.

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 042003 doi:10.1088/1742-6596/513/4/042003

3



Internally, Rucio processes replication rules and creates a replica lock for each replica created
or covered by the rule. Replicas with at least one replica lock are exempt from the deletion
procedure. Quota calculations are based on replica locks and not actually created replicas.
Therefore quotas are not based on the amount of physically created replicas. For example, a
single replica can have multiple replica locks from different rules and all accounts will pay from
their quota for the file, not only the account who was responsible for creating the replica in the
first place.

Once a replication rule is removed, the associated replica locks are removed as well. Replicas
without any replica lock are flagged to be picked up by the deletion service.

Possible parameters for a replication rule are:

• dataidentifier: The data identifier the rule affects.

• owner: The account owning the replication rule. RSE permissions and quotas are checked
based upon this account.

• copies: The number of replicas the replication rule should cover (Replication factor).

• RSE Expression: The RSE expression defining a set of RSEs the site selection algorithm
should consider. The RSE Expression formal language definition is covered in Section 3.1.

• grouping: When a replication rule is specified for a dataset or container, the replicas can
be grouped in three different ways: The NONE grouping defines that no grouping should be
used and the selection algorithm selects an RSE randomly for every file. The ALL grouping
option means that all files are replicated to the same RSE. The DATASET grouping defines
that all files within the same dataset are replicated to the same RSE.

• weight: The RSE selection algorithm can respect weights assigned to the RSEs as meta
attributes. The weight option defines the name of the weight to be used.

• lifetime: Lifetime of the replication rule. Once expired, the rule gets deleted and the
replicas, if not covered by another rule, are marked for deletion.

• locked: A lock flag which additionally protects the rule from deletion.

• subscription id: If the replication rule is created by a subscription, the subscription id
will be stored with the rule.

Additionally, every replication rule is in one of four states:

• OK: All replicas have been created, no further actions are needed.

• REPLICATING: The rule is currently replicating at least one file to its destination.

• STUCK: At least one file could not be replicated to its target destination. Rucio will try to
repair Stuck replication rules and select a different target destination, if possible.

• SUSPENDED: This manually set state defines that no further actions are taken to satisfy the
rule.

3.1. RSE Expression formal language definition
RSE Expressions are strings based on the RSE Expression language defined in this Section. The
expressions of each rule are interpreted by Rucio and result in a non empty set of RSEs. For
example, to define a replication rule considering all German and French Tier-2 sites, the suitable
replication rule would be ”tier=2&(country=FR|country=DE)”, which is equivalent to the set
of all Tier-2s intersected with the set of all french and german sites.

The formal language Lrseexp is defined by the formal grammar Grseexp = (N,Σ, P, S), with
N = {RSE,ATTR,PRIM,B}, Σ = {A, . . . , Z, a, . . . , z, 0, . . . , 9, (, ),∩,∪, \}, S is the start
symbol and the following production rules P :

(i) S → B

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 042003 doi:10.1088/1742-6596/513/4/042003

4



(ii) S → PRIM

(iii) B → RSE

(iv) B → ATTR

(v) PRIM → B ◦B where {◦ ∈ {∩,∪, \}}
(vi) PRIM → B ◦ (PRIM) where {◦ ∈ {∩,∪, \}}
(vii) PRIM → (PRIM) ◦B where {◦ ∈ {∩,∪, \}}

(viii) PRIM → (PRIM) ◦ (PRIM) where {◦ ∈ {∩,∪, \}}
(ix) PRIM → (PRIM)

The symbol B is an auxiliary symbol, to reduce the amount of production rules.
The RSE symbol corresponds to the name of a specific RSE. Its ASCII representation in

Rucio is defined by the regular expression ”[A-Z0-9]+([ -][A-Z0-9]+)*”.
The ATTR symbol corresponds to match of a specific RSE attribute with a value. These

attributes are meta tags assigned to RSEs. Its ASCII representation in Rucio is defined by the
regular expression ”[A-Za-z0-9\.]+=[A-Za-z0-9]+”. An attribute match results in, possibly
empty, set of RSEs.

The PRIM symbol corresponds to operation primitives. Operation precedence can be given
with brackets. The classical set operations ∩,∪, \ are defined (in ASCII they correspond to the
characters “&”, “|” and “\”).

3.2. Architecture & Workflow
The replication rule architecture is split into two components: The replication rule core
component residing in the Rucio core on the server and the replication rule daemon, called
Judge. The core component synchronously processes create, delete and list replication rule
requests and immediately gives a result to the caller. The daemon asynchronously operates on
events, which due to their nature cannot be done synchronously, like deleting expired replication
rules. It also re-evaluates rules on datasets and containers which have been changed, which
technically could be done synchronously in the core, but we chose to separate this workflow
from the dataset/container change workflow for performance reasons.

The workflow of replication rule creation is defined as follows:

(i) Parse the RSE Expression of the rule and transform it into a set of RSEs.

(ii) Resolve the data identifier into a list of containing files, datasets and containers as well as
their replica locks.

(iii) Check quotas and permissions of the account.

(iv) Based on the chosen grouping, for each group of files (or all of them) choose the optimal
RSE, which is based on existing or scheduled replica locks as well as the weights specified
by the weighting option.

(v) Create the replica locks and, if necessary, create transfer requests if replicas have to be
created.

The RSE selection algorithm is set to minimize the amount of created transfers. However,
the algorithm can be replaced by a different algorithm which follows a different policy. Step (ii)
of the workflow row-locks the considered replica locks in the database, as the workflow has to
make sure that no replicas get deleted while they are under consideration for new rules.

The Judge is actually split up into three parts. The rule-cleaner, which deletes expired
replication rules; the re-evaluator, which re-evaluates rules for datasets/containers which have
been changed; and the rule-repairer, which tries to repair erroneous rules, by selecting different
replica destinations, if allowed by the RSE expression. The daemons are configurable in amount
of processes to run and amount of threads per process. This way the request queue gets processed
by as many separate threads as necessary for the workload.

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 042003 doi:10.1088/1742-6596/513/4/042003

5



3.3. Evaluation
To evaluate the scalability of Rucio and the replica management component, Rucio was engaged
in a stress test with nominal and twice the peak workload measured on DQ2. For detailed
information on the stress test environment and setup, see [7]. It was difficult to come up with
a target value for the rule creation rate, as the concept does not exist in DQ2. However, the
nominal amount of created replicas is equivalent to the one in DQ2. Figure 2 shows the frequency
of delete-rule calls on the core as well as rule deletions due to rule expiration. Figure 3 shows
the frequency of re-evaluate operations carried out by the Judge (1 process with 60 threads). The
component managed to cope with the workload very well without accumulating any backlogs.

Figure 2. Delete replication rule calls (rules on
files/datasets/containers)

Figure 3. Judge re-evaluate operations for
datasets/containers

4. Subscriptions
While replication rules are responsible for the replica management of existing data, subscriptions
are responsible for the replica management of not yet existing data. They are mainly used
to represent collaboration policies for data replication. Subscriptions generate replication
rules for newly created data identifiers, by matching their meta data at registration time.
Subscriptions are owned by an account and specify a set of replication rules as well as a set
of meta data which they use for matching. An example for the meta data match would be
”project=data12 8TeV,dataType=RAW,stream=physics,DIType=dataset”. The subscription
definition only allows to connect the meta data attributes by the logical and operator ’,’.

4.1. Architecture & Workflow
The core component of the subscriptions is responsible for simply creating, deleting and listing
subscriptions. As subscriptions are not matched synchronously during data identifier creation,
the corpus of the work is done asynchronously by the Transmogrifier daemon, which is split into
a polling agent and a pool of workers. Whenever a data identifier is registered in Rucio, it gets
flagged as new by the Rucio core. The workflow of the Transmogrifier daemon is shown in figure
4 and defined as follows:

(i) The Poller reads a bulk of new data identifiers from the database and also reads all currently
active subscriptions.

(ii) The Poller creates work packages (subset of the data identifiers & all subscriptions) and
sends them to the Gearman server.

(iii) The Gearman server distributes each work package to one of the idling workers.

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 042003 doi:10.1088/1742-6596/513/4/042003

6



(iv) Each worker matches each data identifier’s meta data with the meta data of the
subscriptions. If a successful match is made, it generates replication rules for the data
identifier and stores them to the database. The created replication rules are interpreted by
the rule component momentarily.

(v) After matching, the worker removes the new flag from the data identifier on the database.

Database

Transmogrifier
(Poller)

Gearman
Server

Gearman
WorkersGearman

WorkersTransmogrifier
(Worker)

gets bulk of DIDs
gets all subscriptions

sends matching jobs

and all subscriptions

dispatches jobs

creates replication rules

removes flag

Figure 4. Workflow of the Subscription daemon

4.2. Evaluation
The subscription component was also engaged in the same stress test as mentioned in Section 3.3.
Twice the nominal peak load of container/dataset/file creation was used with a representative
set of subscriptions from DQ2. The Transmogrifier daemon and its workers passed this stress
test without any performance problems.

5. Conclusion
DQ2, the data management system of the ATLAS experiment has provided the collaboration
with a well functioning system during the last years. However, due to conceptual limitations
in the original design, it is very difficult to extend the current system while handling the
workload of the coming years. For this reason, Rucio, the next generation data management
system of the ATLAS experiment, was introduced. In this article, we introduce replication
rules which give users a powerful toolkit to manage their replication workflows, while at the
same time giving Rucio more liberty to save resources, like bandwidth and storage. We also
present the subscription component, which matches meta attributes of new data with existing
subscriptions and generates replication rules for matching data identifiers. We show the concept
and architecture of these components and evaluate them by engaging them in a stress test.

References
[1] Jones R and Barberis D 2008 The ATLAS computing model Journal of Physics: Conference Series vol 119

(IOP Publishing) p 072020
[2] Branco M, Zaluska E, De Roure D, Lassnig M and Garonne V 2010 Concurrency and Computation: Practice

and Experience 22 1338–1364 ISSN 1532-0634
[3] Bird I, Bos K, Brook N, Duellmann D, Eck C, Fisk I, Foster D, Gibbard B, Girone M, Grandi C et al. 2008

LHC computing grid EGEE, Mar vol 18
[4] Garonne V, Stewart G A, Lassnig M, Molfetas A, Barisits M, Beermann T, Nairz A, Goossens L, Megino

F B, Serfon C et al. 2012 The ATLAS distributed data management project: Past and future Journal of
Physics: Conference Series vol 396 (IOP Publishing) p 032045

[5] Fielding R T and Taylor R N 2002 ACM Transactions on Internet Technology (TOIT) 2 115–150
[6] Bayer M 2013 URL http://www.sqlalchemy.org/. Accessed on the 2013-09-12
[7] Vigne, Schikuta, Garonne, Stewart, Barisits, Beermann, Lassnig, Serfon, Goossens and Nairz 2013 Journal of

Physics: Conference Series to appear

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 042003 doi:10.1088/1742-6596/513/4/042003

7


