
ATLAS Job Transforms: A Data Driven Workflow

Engine

G A Stewart1,2, W B Breaden-Madden2, H J Maddocks3,
T Harenberg4, M Sandhoff4 and B Sarrazin5

1CERN, CH-1211, Geneva 23, Switzerland
2University of Glasgow, Glasgow G12 8QQ, Scotland
3University of Lancaster, Bailrigg, Lancaster, Lancashire LA1 4YW, UK
4Bergische Universität Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany
5Universität Bonn, D-53012 Bonn, Germany

E-mail: graeme.andrew.stewart@cern.ch

Abstract.
The need to run complex workflows for a high energy physics experiment such as ATLAS

has always been present. However, as computing resources have become even more constrained,
compared to the wealth of data generated by the LHC, the need to use resources efficiently and
manage complex workflows within a single grid job have increased.

In ATLAS, a new Job Transform framework has been developed that we describe in this
paper. This framework manages the multiple execution steps needed to ‘transform’ one data
type into another (e.g., RAW data to ESD to AOD to final ntuple) and also provides a consistent
interface for the ATLAS production system.

The new framework uses a data driven workflow definition which is both easy to manage and
powerful. After a transform is defined, jobs are expressed simply by specifying the input data
and the desired output data. The transform infrastructure then executes only the necessary
substeps to produce the final data products. The global execution cost of running the job is
minimised and the transform can adapt to scenarios where data can be produced along different
execution paths. Transforms for specific physics tasks which support up to 60 individual substeps
have been successfully run.

As the new transforms infrastructure has been deployed in production many features have
been added to the framework which improve reliability, quality of error reporting and also
provide support for multi-process jobs.

1. Introduction
The evolution of high energy physics computing in the LHC era has been towards an increasingly
distributed environment. ATLAS [1], for example, uses a Tier-0 centre [2] that is centrally
operated at CERN and has a computing grid of 10 regional Tier-1 facilities and around 100
smaller Tier-2 sites. This has increased the complexity of computing, both in bookkeeping and
in the overheads associated with job submission.

In order to manage ATLAS jobs on the grid and at the Tier-0, a set of scripts were developed
to help configure the main ATLAS offline computing framework, Athena [3]. These scripts
simplify the configuration of jobs at the Tier-0 and in the grid production system [4], ensure
that errors from Athena are consistently reported and provide a validation of the outputs from
the jobs. These scripts are known as Job Transforms.

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 032094 doi:10.1088/1742-6596/513/3/032094

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



In this paper we describe the role that the transforms play in ATLAS and how the new job
transform framework better fulfils the needs of the experiment.

2. ATLAS Job Transforms
2.1. Job Configuration
ATLAS offline software uses Gaudi [5], a well established software framework that has been
developed by ATLAS and LHCb. Gaudi utilises a python based job configuration system, which
is extremely flexible. However, there is no built-in facility for converting command line options to
python configuration files and the actual job configuration may become very large and unwieldy.
One of the first roles of the job transform, then, is to provide a mechanism by which jobs may
be configured via command line options and that the overall configuration of the job may be
simplified. e.g., a job transform should allow a job to be specified in terms of a simple input
and output file such as:

Reco_tf.py --inputBSFile data12.1234.RAW --outputESDFile data12.1234.ESD

This is then converted to a python job options file such as

runArgs.inputBSFile = ["data12.1234.RAW"]

runArgs.outputESDFile = "data12.1234.ESD"

In addition to these simple options, the actual transform (in this case Reco tf.py) has a job
options template (or skeleton) associated with it. This template encapsulates all of the standard
job options necessary to reconstruct a RAW detector file to an ESD (Event Summary Data) file
– in this case the template used is skeleton.RAWtoESD tf.py. These templates allow most of
the complexity of standard jobs to be hidden and to be updated by experts as necessary, quite
independently of the normal simple use cases.

2.2. File Validation
As part of managing the processing of a job, the transforms offer the ability to test and validate
input and output files. This is because errors in file access can be difficult to diagnose inside the
offline software and, once a file has been written, it is useful to do a check that actually reads
the file back off the storage system.

The transforms should offer the ability to do both fast event count checks and full ROOT
scans of files. As the value of such checks must be balanced against the cost of doing them, in
practice ATLAS makes a fast check on input files and a deeper check of output files.

2.3. Error Handling
HEP software implements complex algorithms in a sophisticated framework with a considerable
number of external dependencies (storage systems, database access). This provides a multiplicity
of ways in which jobs can fail, both in terms of the component that can have produced the failure
and the underlying cause of the failure itself. From an operational point of view it is essential
when triaging failures that these error messages are clearly reported and categorised, so that
errors that need expert attention can be dispatched appropriately.

The transform framework must provide a clear way to generically categorise failures (core
dump, file corruption, etc.) and also offer a facility for passing on a detailed error message.

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 032094 doi:10.1088/1742-6596/513/3/032094

2



ATLAS Job 
recieved from 

production system

Parse Command 
Line Arguments

Input 
Files

Validate Input 
Files

Job OptionsWrite Job Option 
Skeletons

Spawn Athena 
Job

Output 
Files

Log File

Athena

Read Output 
Status and scan 

logfies

Job Report

Validate Output 
Files

Produce Job 
Report and Exit

For multi-step jobs
this sequence is 

repeated.

Output files from
one step are usually

input files for the
next step.

Figure 1. Overview of transform workflow

2.4. Metadata Handling
All jobs, successful or failed, produce metadata. For failed jobs the most important metadata is
the failure messages (handled as per section 2.3). For successful jobs, it is important to propagate
metadata upstream to the ATLAS Metadata Interface [6] (AMI). Such metadata can concern
the job configuration, the execution of each substep and the output files that are produced.
For the output files the number of output events is critical metadata, but other data, such as
conditions and geometry setup, is very useful for final physics analysis.

2.5. Workflow Overview
Figure 1 gives an overview of the workflow for a job transform. An important feature of this
workflow is the ability to run multi-substep jobs, where the outputs from one substep are fed
as inputs to a subsequent step. At the end of the chain final data products are produced from
the original inputs and the intermediate files may either be ephemeral or may also be final job
outputs.

3. Old Transforms Framework
Originally job transforms were implemented as a simple set of shell script wrappers around jobs
at the ATLAS Tier-0. As transforms proved useful there was a new version written in python.

This framework was run for a number of years in production for ATLAS and was successful
in processing many millions of jobs. However, the maintenance of the framework became
increasingly problematic as the original developers moved on to new projects. In particular,
the implementation suffered from a number of specific problems:

• Extensive use of implicit methods in the framework, e.g., the execution of a transform was
triggered implicitly by retrieving its exit code. This made tracing the way in which the

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 032094 doi:10.1088/1742-6596/513/3/032094

3



Transform
initialise

Substep
preExecute()

Substep
execute()

Substep
postExecute()

Substep
validate()

Transform
finalise

Repeat for all substeps

Figure 2. Internal workflow of the new transform framework

transforms worked more difficult.

• Accumulation of redundant code no longer relevant to ATLAS’s running conditions, e.g.,
code to stage data from tape systems at CERN.

• Deep inheritance for classes that introduced unnecessary complexity into the framework.

• No builtin support for jobs that need to execute multiple substeps, with multi-step jobs
implemented as a customised extension in a separate module.

4. New Framework
Increasing problems in maintaining the transforms framework and a significant backlog of open
bugs led to a review of the future of the transforms in ATLAS. This review concluded that the
old framework should be frozen (aside from essential bug fixes) and the development of a new
framework embarked upon. The advantages of such an approach were:

• The successful transforms model, which is well integrated with other code, was maintained.

• The risks of extensively modifying the old framework were ameliorated by freezing it during
data taking in 2012.

• The old framework lacked the capacity to cope with the important use case of multi-step
jobs, with no clear way to introduce it.

• The new transforms could be developed in parallel and then introduced gradually, allowing
for a phased deployment.

4.1. Fundamental Design
The guiding design for the new transforms was to make the fundamental workflow shown in figure
1 as explicit as possible. The development was also guided by agile programming principles,
in particular meaning that development should be focused in solving actual problems for the
collaboration instead of trying to cover all possible use cases from the outset.

Internally the transform adopted a workflow adapted from the classic HEP event processing
model of initialise(), eventLoop(), finalise(). However, in this case, the event loop is
replaced with the execution of an individual substep. These substeps themselves have a well
defined workflow: preExecute(), execute(), postExecute() and validate(). The transform
internal work flow is shown in figure 2.

In every case where functionality was required standard python modules were used if possible.
Thus all logging in the new framework is done through the standard python logging module.
Argument parsing is handled by the argparse module, with some customised extensions needed
by the transforms (e.g., returning multiple value arguments as single class instance with an array
as its ‘value’ instead of an array of single valued instances, which is the default behaviour).

4.2. Error Handling
As dealing clearly and consistently with failures during execution is extremely important, the
decision was made to consistently use exceptions to handle errors internally. The transform
exception classes have two internal data members: an error number, which is the exit code for

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 032094 doi:10.1088/1742-6596/513/3/032094

4



RAWtoESDRAWStart ESDtoAODESD StopAOD

HIST_ESD HIST_AOD

DQ Hist 
Merge

HIST

ESD

Figure 3. A graph representation of a three step reconstruction transform. The individual
substep nodes are in red and the edges show data flow. Note that in this case ESD is a final
data product, so it flows into the Stop node; however, HIST ESD and HIST AOD are ephemeral
and are only used to make the final data quality histograms (HIST), then they are discarded.

the transform if this exception is unrecoverable; and an error message, which gives as many
details as possible about why this exception was raised and will be used by shifters and experts
to analyse the problem.

The allows the monitoring components that are used by shifters to provide good quality
information regarding general error categories (exit codes) and specific information regarding
failure reasons (exit messages).

Special handlers for Athena logfiles are also implemented that ease the extraction of key
information about execution failures without the need for Athena itself to implement complex
error message reporting.

4.3. Graphs and Multi-Step Jobs
As pointed out in section 2, support for multi-step jobs is a key use case for job transforms.
Such use cases are characterised by the flow of data out of one substep and into the next. This
gives rise to the natural representation of a multi-step job as a graph, where nodes are substeps
and edges are data products [7]. A basic illustration of a multi-step workflow is shown in figure
3. Transform graphs are directed and acyclic.

A specific transform has a representation of the graph of all possible data flows and substeps
as part of its definition. For a developer, input and output data types are simply lists of strings,
making them very easy to use. (When multiple inputs are all necessary as a substep’s input a
tuple of strings is passed instead.) The transform framework then examines the input and output
data for a specific job and determines which substeps need to be executed. An example of a
reconstruction job that runs three substeps is shown in figure 3. In that example if histograms
(HIST data type) had not been requested then the production of HIST ESD and HIST AOD
would have been suppressed, as would the execution of the DQ Hist Merge substep.

4.3.1. Solution Algorithm The problem that the transform faces is not the classic problem of
tracing the shortest single path through a graph (solutions to these problems are well known).
Instead the transform must trace a path for each data type that is a final output and minimise
the overall cost of execution.

To do this, the following algorithm is applied:

(i) The substep nodes are topologically ordered (listed in such a way that all edges point in
one direction).

(ii) All data types are then also topologically ordered, by their earliest appearance in the graph.

(iii) Input data is flagged as available.

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 032094 doi:10.1088/1742-6596/513/3/032094

5



HEP EventESDStart

Mu 
Embedding

ESD_Skimmed

Stop

TXT_MuEvt Muola

EVNT_MU

Mu Geant4

Hits Mu

Mu Digi
Mu RDO

Mu Reco

Mu ESD

Mu 
Subtraction

ESD 
Subtracted Mu

Mu ESD

Mu Filter

ESD Pre filter

ESD RecoESD Embedded Mu AOD Embedded Mu

--inputESDFile

--outputAOD_EMBFile

Figure 4. An extract from the H → ττ embedding workflow.

(iv) Final output data is flagged as required.

(v) The required data products are considered in topological order (i.e., data produced earlier
is considered first). For each needed data product:

(a) All paths that lead from a desired data product to an available data product are
considered – as the graph is directed acyclic this is a linear time operation. (This
allows transforms to be defined where data can be produced in different ways, the
cheapest way will be chosen, which may vary depending on the set of output data
required.)

(b) The cheapest path is set to activated, meaning that the cost of executing a substep on
this path is now set to zero for any subsequent data production.

(c) If any additional data is required on this path it is added to the list of required data.
(d) The considered data type is now moved from the required list to the available list.

When all data is in state available and the required list is empty then the graph tracing
algorithm can stop and provide a list of

(i) substeps that need to be executed;

(ii) data products that need to be produced (as substeps can produce more than one data
product it is necessary to know this for the correct substep configuration).

If the graph algorithm finds a data type that it cannot produce it raises an exception.

4.3.2. Performance and Scaling This algorithm is not guaranteed to find the cheapest execution
cost in all cases; however, it does find the best path for all workflows in ATLAS.

The most complex workflow considered so far is that to support the embedding of simulated
H → ττ decays into real data di-muon events. There are nine possible primary output data
types, depending on the τ decay mode, and the transform contains 60 substeps (an extract of
the workflow is shown in figure 4). Even in this complex case the graph algorithm runs in about
250ms, compared with a job execution time of around 20 hours.

4.4. Testing and Quality Control
Throughout the development of the new transform framework an extensive set of tests was
developed. These included module unit tests and longer running end to end tests of important

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 032094 doi:10.1088/1742-6596/513/3/032094

6



workflows. All of these tests, however, run within the python unittest framework, ensuring
that they can be run easily by developers on the command line (before code is committed),
by the nightly test framework [8], just after the transform packages are built, or by the more
extensive ATLAS Run Time Tester framework [9].

4.5. Enhancements and New Features
The redesign of the transform framework has made it significantly easier to add new features
to the workflow of particular transforms, by having specialist executor classes. This cleanly
separates specialist requirements from the transform core. Features can be added to any of the
preExecute(), execute(), postExecute() or validate() steps.

An example of such a feature is the ability to switch the version of Athena in which a
particular substep executes. This allows ATLAS to, for example, re-run the trigger using an old
release of Athena that may correspond to particular data taking period of interest.

Another example is special handling of the multiple outputs from AthenaMP [10] job (grid
jobs where Athena runs in a multi-process mode). Here the transform can specially merge files at
its discretion, improving job efficiency and output file size. As there is huge scope for flexibility
within an executor, development is underway to ensure that merging occurs in parallel, which
will further improve cpu to walltime efficiency for these jobs.

4.6. Metadata
Historically Tier-0 and the ATLAS grid production system used two different formats for
transmitting metadata upstream. At Tier-0 a pickled python dictionary was employed, in
contrast to the XML used in grid production. As part of the job transforms review and rewrite
it has been agreed to unify these reports. The reports themselves are nested python dictionaries,
structurally mirroring the transforms’ internal workflow and JSON was chosen as a convenient
serialisation technology. The quality of information transmitted has been improved and allows
downstream components to gain knowledge of each substep’s execution and resource utilisation.

In order to smooth the transition to the new framework a backward compatible version of
both the pickle and XML job reports is available, allowing the deployment of the new transforms
to be decoupled for downstream client dependencies.

5. Summary and Conclusions
A new job transforms framework for ATLAS has been developed. This framework has a
considerably simplified design and clearer workflow that has helped ATLAS software developers
write transforms for many new use cases. The new framework is already in production for many
use cases and is simplifying computing operations and improving ATLAS’s ability to flexibly
exploit computing resources at Tier-0 and on the grid.

References
[1] The ATLAS Collaboration 2008 Journal of Instrumentation 3 S08003
[2] Elsing M, Goossens L, Nairz A and Negri G 2010 Journal of Physics: Conference Series 219 072011
[3] Calafiura, P et al 2005 Computing in High Energy Physics 2004, Interlaken
[4] Golubkov D et al 2012 Journal of Physics: Conference Series 396 032049 URL

http://stacks.iop.org/1742-6596/396/i=3/a=032049

[5] Barrand G et al 2001 Comput.Phys.Commun. 140 45–55
[6] Albrand S, Doherty T, Fulachier J and Lambert F 2008 Journal of Physics: Conference Series 119 072003

URL http://stacks.iop.org/1742-6596/119/i=7/a=072003

[7] Wikipedia Graph theory (Retrieved 2013-12-10) URL http://en.wikipedia.org/wiki/Graph theory

[8] Undrus A 2003 Computing in High Energy Physics 2003, San Diego URL
http://arxiv.org/pdf/hep-ex/0305087.pdf

[9] Simmons B, Sherwood P, Ciba K and Richards A 2010 Journal of Physics: Conference Series 219 042023
URL http://stacks.iop.org/1742-6596/219/i=4/a=042023

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 032094 doi:10.1088/1742-6596/513/3/032094

7



[10] S Binet et al 2012 Journal of Physics: Conference Series 368 012018 URL
http://stacks.iop.org/1742-6596/368/i=1/a=012018

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 032094 doi:10.1088/1742-6596/513/3/032094

8


