

Next Generation PanDA Pilot for ATLAS and Other
Experiments

P Nilsson1*, F Barreiro Megino2, J Caballero Bejar3, K De1, J Hover3, P Love4, T
Maeno3, R Medrano Llamas2, R Walker5, T Wenaus3
on behalf of the ATLAS Collaboration
1University of Texas at Arlington (US), 2CERN, 3Brookhaven National Laboratory
(US), 4Lancaster University (UK), 5Ludwig-Maximilians-Univ. Muenchen (DE)

E-mail: Paul.Nilsson@cern.ch

Abstract. The Production and Distributed Analysis system (PanDA) has been in use in
the ATLAS Experiment since 2005. It uses a sophisticated pilot system to execute
submitted jobs on the worker nodes. While originally designed for ATLAS, the
PanDA Pilot has recently been refactored to facilitate use outside of ATLAS.
Experiments are now handled as plug-ins such that a new PanDA Pilot user only has
to implement a set of prototyped methods in the plug-in classes, and provide a script
that configures and runs the experiment-specific payload. We will give an overview of
the Next Generation PanDA Pilot system and will present major features and recent
improvements including live user payload debugging, data access via the Federated
XRootD system, stage-out to alternative storage elements, support for the new
ATLAS DDM system (Rucio), and an improved integration with glExec, as well as a
description of the experiment-specific plug-in classes. The performance of the pilot
system in processing LHC data on the OSG, LCG and Nordugrid infrastructures used
by ATLAS will also be presented. We will describe plans for future development on
the time scale of the next few years.

1. Introduction
A common approach in grid computing is to use pilot jobs. In the case of ATLAS [1], pilot factories
are used to send special lightweight jobs, called pilot wrappers, to the batch systems that execute them
on the worker nodes. The pilot wrappers download the PanDA Pilot [2] and launch it using pilot
options that are relevant to the site in question. The responsibility of the pilot is to download the actual
payload from the PanDA Server and any input file from the local Storage Element (SE), execute the
payload, upload the output to the SE, and send the final job status to the server.
PanDA [3], Production and Distributed Analysis, is a workload management system that has been
used by the ATLAS Experiment since 2005. The PanDA system has been very successful in managing
the distributed analysis and production requirements across all ATLAS grids; OSG [4], EGI [5] and
Nordugrid [6]. Today PanDA is being considered for use beyond ATLAS by several other

* To whom any correspondence should be addressed.

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 032071 doi:10.1088/1742-6596/513/3/032071

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1

experiments. To meet this need, it has been necessary to refactor the PanDA Pilot which until recently
has been ATLAS-.

2. General structure of the PanDA Pilot
The PanDA Pilot is written in the Python language and has a modular structure. The main code is
divided into two modules, pilot and monitor, to facilitate the introduction of glExec [7], which offers
user identity switching. While it would have been easier to do any user identity switching before the
pilot is launched by the wrapper, it was not an alternative for ATLAS because of the highly useful
multi-job mechanism that allows a single pilot to download and run multiple payloads from different
users in sequential order until it uses up a predetermined time allocation. The pilot contains the multi-
job loop, and starts the monitor after having successfully downloaded a job (defined as a payload and
all the information needed to execute it). The monitor forks and monitors a subprocess module, which
is in charge of serving the payload. Stage-in and stage-out are handled by Site Mover modules. A
number of utility type modules exist that serve the main modules, including server communication,
TCP messaging, error code handling and interpretation, job definition, as well as other utilities. More
details on the main pilot modules and special mechanisms are given in the sections below.

3. Plug-in mechanism
A new PanDA Pilot user should in principle only have to implement certain methods (marked as
"compulsory" in the code) in the plug-in *Experiment and *SiteInformation classes. The plug-in
classes contain methods that are experiment-specific but sorted into two different classes. The
*Experiment classes contain methods related to payload setup, how the subprocess (see below) should
be launched, how metadata should be handled, which files should be removed from the payload work
directory before the job log file is created, etc. The *SiteInformation classes contain methods for
handling site information from a database, how it should be downloaded, from where, and how to
verify its integrity, as well as how to manipulate it (e.g. parameter overwrites which can be useful for
special testing), etc.
When the pilot wrapper launches the PanDA Pilot, it gives it a set of options that defines the initial
state of the pilot. A pilot option is used to select a certain experiment. Internally, the value is used to
generate the proper Experiment and SiteInformation objects via factories (ExperimentFactory and
SiteInformationFactory) based on the Factory Design Pattern. More details about the *Experiment and
*SiteInformation classes can be found in the sections below.

4. Workflow of the PanDA Pilot
This section outlines the workflow of the PanDA Pilot and provides information about when methods
that are compulsory to implement are called. Several compulsory methods are already implemented in
the base classes, which might or might not only be relevant for ATLAS. If any detail needs to be
changed in these methods, the user simply makes a copy of the default method in the base class and
add it to the derived class and make the necessary changes there. Major steps, indicating the need for
experiment-specific code modifications, are described below.
Upon launch, the PanDA Pilot starts with downloading PanDA site information, unless it is already
downloaded by e.g. the wrapper (or by hand, which can be useful during interactive testing). The
information is downloaded via HTTPS from the PanDA server. In case experiment-specific changes
are needed, the corresponding methods for handling the site information can be overridden in the
relevant subclass (*SiteInformation). A description of all site information database fields used by the
PanDA system can be found in [8].
The pilot then performs a set of special checks and displays information that can be unique to an
experiment. For ATLAS, the pilot tests the import of the LFC (LCG File Catalog) module, verifies
CVMFS (CernVM File System) via an external script and displays the CVMFS change log, as well as
system architecture information. Any test failure can be used to abort the pilot.
A signal handler is declared that will handle and act on incoming kill signals. If such a signal is

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 032071 doi:10.1088/1742-6596/513/3/032071

2

received, the pilot will immediately inform the PanDA server and then proceed to kill the remaining
subprocesses (if any). It is important that the SIGKILL signal does not arrive too soon after the initial
kill signal, since it can take up to a few minutes for the pilot to kill all subprocesses and perform the
clean up. The time difference between SIGKILL and other kill signals can be fine tuned in case the
kill signal originates from the batch system. Approximately four minutes of time difference is an
absolute minimum time limit, but a longer time is recommended.
If the site, where the pilot is running, has opted for job recovery, an algorithm will be run that looks
for output files deliberately left behind by previous pilots that encountered problems during stage-out.
The stage-out of these files will be re-attempted for a limited number of tries.

5. The Multi-Job loop
The main loop of the PanDA Pilot is the so-called multi-job loop. As mentioned in Section 2, this
refers to the capability of running multiple jobs, from different users, sequentially until the pilot runs
out of time. This is a site configurable feature controlled via a time floor field in the PanDA site
information database. If it is set to a value greater than zero, the multi-job loop will download and
execute payloads until it runs out of time. The multi-job feature is of particular use when there are
many short jobs are in the system (the pilot launch overhead is bypassed).
The multi-job loop begins with downloading a job from the PanDA server (specifically the job
dispatcher component). As an alternative, the job can also be downloaded in advance or be created by
hand and be placed in a file, which will be found and used by the pilot. If the dispatcher cannot find a
job, the pilot waits one minute and then tries again. If a job still cannot be found, the pilot aborts.
When asking for a job, the pilot sends worker node details (e.g. CPU and memory information) along
with other parameters (e.g. the user DN in case a job corresponding to the matching DN is required) to
the job dispatcher which decides if it should return a job to the pilot or not. A successfully downloaded
job definition dictionary is stored in a file for later use.

6. The monitoring loop
The PanDA pilot is equipped with glExec. Because of the multi-job loop, the pilot wrapper cannot
perform any user identity switching before the pilot is launched which would otherwise be the normal
approach. To solve this problem, the inner part of the multi-job loop (henceforth referred to as the
monitoring loop) is placed in a separate module called the monitor. The glExec user identity switching
is done before the monitor is executed. The monitor module is used either directly by the pilot, in the
case glExec is not used, or after the glExec user identity switching.
The main method of the monitor module begins with creating a TCP server run as a separate thread.
The TCP server will listen to messages sent from a pilot subprocess, which is responsible for the
payload and is further described below. The pilot performs local checks, including a verification of the
pilot user proxy and whether there is enough disk space left for running the job. The remaining time of
the VOMS (virtual organization membership service) proxy extension must be over 48 hours, and the
local disk must have at least 5 GB free space left.
The pilot extracts and verifies the existence of the software directory, if defined in the site information.
Alternatively, it can get the software directory from an environmental variable.
The pilot proceeds with forking a subprocess that will execute the payload. The parent process
corresponds to the monitoring loop, while the child process can be any of the subprocesses described
in the Subprocess module section below. The default subprocess is called runJob, which performs
payload setup, stage-in of input files, payload execution and stage-out of output files. Additional
subprocess modules are currently in development. The subprocess selection has been made
experiment-specific in case further subprocess modules need to be developed.
Every ten minutes, the main monitoring loop checks the remaining disk space, the number of running
processes, that the entire pilot has not run out of time on the worker node, and that the payload is not
stuck, i.e. has not stopped writing to its output files before the execution has finished normally. A 60
second sleep marks the end of a monitoring loop iteration. When a job has ended, its work directory is

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 032071 doi:10.1088/1742-6596/513/3/032071

3

tarred up and is staged out by the main pilot process. Any lingering orphan subprocesses (e.g. from a
failed payload) will be identified and killed. As a last step, the payload work directory is deleted and
the monitor returns to the multi-job loop in the pilot module.

7. Subprocess modules
The monitor module forks and monitors a subprocess that is responsible for the payload. This
subprocess can in principle be any module that needs the full attention and supervision of the monitor.
The primary PanDA Pilot subprocess module is the runJob module. Two additional subprocess
modules are currently in development; runEvent will be used to read and process events from an Event
Service (a new PanDA system that will deliver events to a job instead of files), and runJobHPC will be
used for handling jobs on High Performance Computing facilities.

7.1. The runJob module
This section describes the main steps of the primary subprocess module, runJob.
Payload setup: Before the payload can be executed, the pilot must know how exactly it should be set
up. This is handled by an experiment-specific method that prepares and verifies the proper setup
scripts, including the source commands, followed by the name of payload script and its arguments, or
the corresponding wrapper script that in turn runs the actual payload. The entire setup string will be
executed in its own shell.
Stage-in of input files: The pilot receives information (dataset names, local file names and their
unique identifiers) about which input files should be staged in, if any, from the PanDA Server/Job
Dispatcher when the job is downloaded. ROOT files in user analysis jobs can be opened remotely
(a.k.a. remote I/O or direct access mode) in which case stage-in is not performed. The pilot still needs
to give the full path to the input files in order for the payload wrapper script to be able to read the file
remotely.
For normal stage-in, the pilot needs to know which copy tool to use, and how to lookup the file
information in a file catalog. The copy tool to be used is defined by the copytool or copytoolin fields
in the site information database. Two fields are needed since stage-in and stage-out can use different
copy tools. Common copy tools include: lcg-cp and xrdcp. Otherwise, both fields need to be set. For a
given copytool value, a Site Mover factory is used to return a corresponding Site Mover object. E.g.
for copytool = "xrdcp", the Site Mover factory returns an instance of the xrdcpSiteMover class. Each
copytool supported by the pilot has a corresponding class, inheriting from the parent SiteMover class
containing common code. The pilot currently supports LFC lookup and for Rucio [9].
Stage-out of output files: The pilot needs to know how and where exactly it should transfer the output
files to. The copy tool to be used for stage-out is defined by the copytool field (copytoolin is never
used for stage-out) and the pilot selects the corresponding Site Mover accordingly.
The site mover uses experiment-specific methods (belonging to the *SiteInformation class) for
generating the stage-out paths based on information from several PanDA site information database
fields (se, seopt, se[prod]path, setokens). For Rucio style file path generation, it is enough to add
/rucio at the end of se[prod]path. When the pilot encounters this substring, it will automatically use
Rucio style paths. In that case, the file path will depend on dataset name, local file name and scope.

8. Recent new features of the PanDA Pilot
The user can request live payload debugging when he or she launches the grid jobs using pathena or
prun [10]. When the pilot downloads a corresponding job, it will receive a special instruction in the
job definition to frequently upload debugging information about the payload (essentially the last
several stdout lines). This information will then be made available on the PanDA Monitor job page for
viewing by the user. Normally the pilot sends a heartbeat message to the server every thirty minutes,
but in the case of user debugging, the frequency is increased to five minutes.
The PanDA Pilot has several retry mechanisms. In the case stage-in fails due to a temporary SE related
problem, the pilot will re-attempt the stage-in a second time after a few minutes. If that fails as well,

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 032071 doi:10.1088/1742-6596/513/3/032071

4

the pilot has the option to attempt stage-in from a remote SE using the Federated ATLAS XRootD
(FAX) [11] system. The FAX system consists of several dozens of sites accessed by hundreds of
clients that act like a single storage resource. A special FAX Site Mover was developed for the PanDA
Pilot, which means that the pilot can also use it as a primary copy tool, and not only as a fail-over
mechanism which makes it potentially interesting for “diskless” sites.
The pilot is equipped with a mechanism for stage-out to an alternative SE. The idea is that if the pilot
fails (partially or completely) to stage-out the output files at the primary SE (Tier-2 in ATLAS), it will
download new site information from the database for an alternative/secondary SE in the same cloud
(Tier-1 in ATLAS) and re-attempt the stage-out there.

9. Plans for future developments
The PanDA Pilot has been refactored to facilitate the development of experiment-specific classes. The
Common Analysis Framework collaboration between ATLAS and CMS [12], has resulted in the
development of experiment classes for CMS. Furthermore, AMS [13] is planning to adopt the PanDA
system. Improving and further developing the PanDA Pilot for serving multiple experiments is of
highest priority. To this end, several projects are foreseen including a new version of the job recovery
mechanism [2], providing a full PanDA Pilot documentation, improving error reporting in a multi-
experiment environment, continue glExec integration, pilot support for Event Service jobs and HPC’s.

10. Performance of the pilot system
The PanDA system is serving over 100k production jobs and 35k user analysis jobs concurrently. It is
performing very well with typical job efficiency well over 90%. The error rate in the entire system is
very low. For production jobs the majority of the errors are site or system related, while for user
analysis jobs the most common issues are related to application software. Pilot mechanisms like job
recovery and FAX failover contribute to the robustness against site related failures.

11. References
[1] ATLAS Collaboration, 1994 The ATLAS Experiment: ATLAS Technical Proposal.

CERN/LHCC/94-43
[2] Nilsson P et al, 2012 Proc. of the 19th Int. Conf. on Computing in High Energy and Nuclear

Physics
[3] Maeno T et al, 2010 Proc. of the 18th Int. Conf. on Computing in High Energy and Nuclear

Physics
[4] Open Science Grid: http://www.opensciencegrid.org
[5] European Grid Initiative: http://www.egi.eu
[6] Ellert M et al., 2003 NIM A, Vol. 502
[7] Groep D, Koeroo O, Venekamp G, 2008 J.Phys.:Conf.Series 119 062032
[8] https://twiki.cern.ch/twiki/bin/viewauth/AtlasComputing/SchedconfigParameterDefinitions
[9] http://rucio.cern.ch
[10] https://twiki.cern.ch/twiki/bin/viewauth/AtlasComputing/DAonPanda
[11] Gardner R et al., 2012 Proc. of the 19th Int. Conf. on Computing in High Energy and Nuclear

Physics
[12] CMS Collaboration, 2008 JINST 3 S08004, doi:10.1088/1748-0221/3/08/S08004
[13] Battiston R, 2008 Nucl. Instrum. Methods Phys. Res., Sect. A 588, 227

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 032071 doi:10.1088/1742-6596/513/3/032071

5

