20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 032054 doi:10.1088/1742-6596/513/3/032054

Evaluation of Apache Hadoop for parallel data
analysis with ROOT

S Lehrack, G Duckeck, J Ebke

Ludwigs-Maximilians-University Munich, Chair of elementary particle physics,
Am Coulombwall 1, D-85748 Garching, GER

E-mail: sebastian.lehrack@physik.uni-muenchen.de

Abstract. The Apache Hadoop software is a Java based framework for distributed processing
of large data sets across clusters of computers, using the Hadoop file system (HDFS) for data
storage and backup and MapReduce as a processing platform. Hadoop is primarily designed
for processing large textual data sets which can be processed in arbitrary chunks, and must be
adapted to the use case of processing binary data files which cannot be split automatically.
However, Hadoop offers attractive features in terms of fault tolerance, task supervision and
control, multi-user functionality and job management. For this reason, we evaluated Apache
Hadoop as an alternative approach to PROOF for ROOT data analysis. Two alternatives in
distributing analysis data were discussed: either the data was stored in HDFS and processed
with MapReduce, or the data was accessed via a standard Grid storage system (dCache Tier-2)
and MapReduce was used only as execution back-end.

The focus in the measurements were on the one hand to safely store analysis data on HDFS with
reasonable data rates and on the other hand to process data fast and reliably with MapReduce.
In the evaluation of the HDFS, read/write data rates from local Hadoop cluster have been
measured and compared to standard data rates from the local NFS installation. In the evaluation
of MapReduce, realistic ROOT analyses have been used and event rates have been compared
to PROOF.

1. Introduction

The handling of large data is a very common task in modern computing and many solution have
been developed and examined so far. For processing large high energy physics experimental
data, we investigated the Apache Hadoopl[l]. It is structured as a two-component system: the
Hadoop File System (HDFS) and MapReduce, a framework for processing data from the Hadoop
file system. The HDFS is an open-source derivation of the Google file system (GFS); It aims for
high redundance and availibility of data and cost reduce for hard drives.

The idea with the HDFS is to distribute the data redundant over many machines, called
datanodes, in a network. This was achieved by splitting the data in blocks of a given size
and then randomly storing these blocks mulitple times, each copy of a block on a different node.
A central machine, the namenode, keeps track of every block and its location and ensures the
replication of every block. In case of a disk failure or even the failure of a hole datanode, the
random distribution of the blocks allows the namenode to restore the missing data blocks by
recopying from another datanode. The difference to a normal backup system is that the data is
still available during this restoring process.

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
BY of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Published under licence by IOP Publishing Ltd 1

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing

Journal of Physics: Conference Series 513 (2014) 032054 doi:10.1088/1742-6596/513/3/032054
20 Average event rate
EEm PROOF ¢ 369.9 + 5 Hz
Emm Hadoop Streaming @ 292.1 + 7 Hz
15 | M. _RootOnHadoop ¢ 279.5 + 7 Hz .
12000 5 ¢
EIO
g . :
10000 = .
o *
N 50 100 150 200 250 300 350 400 * 2
T Event rate per worker node in Hz . °
£ 8000 s e '
* o
2 :
o - P
) ® [] . [}
C 6000 . tre ., e .
g Pl i
w ° o
: § . ; !
4000 o o !
L]
.]
[]
(]
* []
2000 . M . PROOF ,
, 9 e Hadoop Streaming
= RootOnHadoop
0 20 25 30

5 10 15
Number of working nodes with one process each

Figure 1. Calculated event rates for different cluster sizes and different analyses software.
Inlay: Histogram of the average event rate per worker node.

Besides storing data, Hadoop offers a posibility to analyse and process data with MapReduce!.
A map task will produce a lot of intermediate results, typically information of the same type
and it can be done parallel. A reduce task will then merge these result e.g. by combining similar
information or dropping unimportant parts.

In Hadoop, every machine in a cluster is both a datanode and a tasktracker. This means, that
the data is stored and the analysis runs on the same physical machine, which reduces network
traffic.

The MapReduce scheme is intended for data that can be splitted arbitrarily and processed
separately. When using Hadoop for analysing experimental data i.e. binary ROOT data, this is
not possible. Besides this, most ROOT files are larger than the typical block size of 64 MB of
a HDFS cluster. So when using a Hadoop cluster for a ROOT analysis, these issues needed to
be addressed.

2. Software

It made no sense to transfer already written ROOT analyses to JAVA, so we investigated
Hadoops possibilities to run any executable or script. For this evaluation, we examined two, the
Hadoop Streaming[2] and the RootOnHadoop Java classes from Stefano Alberto Russo[3].

2.1. Using RootOnHadoop

RootOnHadoop checks for every file consistency and location. It bypasses the Hadoop namenode
and searches directly for the associated blocks on the local hard disks. If the data block is not
available local, it downloads it via the Hadoop interface. Then the external map script is started

! Its name derived from the map and reduce function often used in functional programming.

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 032054 doi:10.1088/1742-6596/513/3/032054

4
©

300 Il THDFS access
Il All data access (local & THDFS)

o
3

o
o

r minute
2
Relative part of THDFS access

N
o
S
o
o

Data access pe
o
&

°
N

50

o
-

o
)

60 . 120 180 | 240 300 . 360
Time in seconds since start of the Hadoop job

Figure 2. Time evolution of local and THDFS access during a RootOnHadoop run. In this
Plot, 5 runs with 25 worker nodes and 350 data files have been accumulated.

which run the desired ROOT analysis. The output is logged and results are uploaded to the
HDFS. A single reducer simply merges the results.

We optimized this procedure with the HDFS access from ROOT. With a patch?, ROOT is able
to read directly from the HDFS cluster and no data needs to be downloaded to the tasktracker.

2.2. Using Hadoop Streaming

The Hadoop Streaming is part of the Hadoop package and therefore available with every standard
installation. It runs any script or executable, which will read and write the data and results
from the standard input to the standard output. Mapper and reducer can be simply developed
on the well known Linux terminal. We used the Hadoop Streaming in the following;:

e A file list with file links to all data files is given as a input for the streaming and has
therefore to be stored on the HDFS.

e The Hadoop Streaming splits this file list line-wise and sends each line to a separate map
task.

e Each mapper starts the ROOT analysis directly with the file link.

e The results from the ROOT analysis are uploaded to the HDFS.

e As intermediate result, the file link to the resulting file on the HDF'S is sent to the reducer.
e The reducer task merges the result files from the HDFS with the hadd command.

For this purpose, the experimental input data was not stored on HDFS but instead was read
from a standard Grid storage system (dCache Tier2).

3. Measurements
We installed Hadoop on about 30 local workstations at the group for elementary particle physics
at LMU Munich. The measurements of the time needed for a realistic ROOT analysis® were

2 For the ROOT version we used (5.34/05), THDFSFile is not compatible with the Hadoop version (1.0.3). We
applied a simple fix in the THDFSFile constructor to the argument list in the function call hdfsConnect AsUser’.
3 A typical N-tuple analysis from LMU’s ATLAS H — WW analysis group was applied. As input data, we used
ATLAS 'SMWZ D3PD’ files. The ROOT analysis performs a simple skimming of the data and fills the histograms
for a cut-flow analysis.

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 032054 doi:10.1088/1742-6596/513/3/032054

600

job

u
o
o

N
o
o

end
reduce
shuffle
map
start

w
o
o

1o

N
o
o

=
o
o

Time in seconds since start of the

(=]

Hadoop

Figure 3. Comparison of the time needed for the different steps of a ROOT analysis for Hadoop
Streaming and PROOF. The time was measured for a run on 19 worker nodes and 350 data
files.

taken over night, analyzing the data with PROOF and with the Hadoop Streaming schema.
Both were alternately and consecutively used. The required time was measured with the Linux
time command. To evaluate the scaling behaviour, we repeated these measurements over a wide
range of cluster sizes. In order to make the measured event rates comparable, we started the
Hadoop cluster with the same worker nodes as PROOF. With the measured time, we calculated
the event rate depending on of the number of worker nodes and the average event rate per
worker node.

Event rates were also calculated for processing the same data set with the RootOnHadoop
software. Since for that analysis the HDFS was used as the data storage for the ROOT input
files, maintaining the same data set and calculating the event rates for different sizes of the
cluster was not possible. Therefore, a full cluster with 27 nodes was used. Since the standard
PROOF setup uses one process per working node, we changed the standard Hadoop setting
accordingly for a better comparision.

4. Results

4.1. Comparison to PROOF

The calculated event rates as a function of cluster size for the different analyse software is
shown in figure 1. The plot shows a linear scaling of the event rate with the number of working
nodes for both, PROOF and the Hadoop Streaming schema, up to 30 working nodes. In our
evaluation, we recognized no bounding behavior in the event rate. We also found out, that
PROOF performed about 10% -20% better in terms of event rate compared to Hadoop. The
RootOnHadoop schema achieved same event rates as the Hadoop Streaming, but still less than
PROOF.

We also simulated a network fail during a running Hadoop job. In one test, we unplugged
a running tasktracker from the network during a running task on this particular node. The
clusters namenode and jobtracker recognized the missing datanode and tasktracker. Besides
blacklisting and restoring the missing data blocks, the running Hadoop job was not harmed.
By replugging the working node, the tasktracker and datanode was instantly reintegrated into
the cluster. The results from that particular tasktracker were collected and processed further
without taking notice of the temporal missing of the working node. In another test, we directly

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 032054 doi:10.1088/1742-6596/513/3/032054

shut down the tasktracker by terminating the corresponding process. The missing tasktracker
was blacklisted by the jobtracker and no further task were provided to that particular node.
Again, the Hadoop job continued without taking notice.

Hadoop is able to handle such situation due to the speculative execution. Every task is started
as an attempt simultaneously on up to 3 different tasktracker. When it become obvious which
tasktracker process the task the fastest, the other attempts are terminated. By that, slowly
running task which will slow down the entire job are sorted out. Also error-prone tasktracker
can be recognized and blacklisted.

4.2. Data locality

For an optimal usage of MapReduce, data should be processed from a local hard drive. Therefore
we tested the data locality for the RootOnHadoop software. We also recognized that to the end
of the Hadoop job, more and more task cannot access the file locally, because the job tracker
scheduled the task without considering the data locality. In figure 2, the used data access
methods, locally and via THDFS, during a Hadoop job is shown. For this histogram, the results
of 5 Hadoop jobs have been accumulated and we used the RootOnHadoop software.

4.3. Time needed per analysis step

In figure 3, we plotted the measured time needed for the different analysis steps during a PROOF
and a Hadoop job. The different steps were named after the corresponding steps in a Hadoop
job. PROOF also reduces files, but likewise on each worker node before collecting the data for a
final merge. Therefore, this step couldn’t be resolved in this comparison. From this comparison,
we see the rather large starting and ending overhead of the Hadoop job compared to PROOF.
Furthermore, a final merge of the result files from all worker nodes is needed in the reduce phase
of the Hadoop job, whereas PROOF can process multiple files in one ROOT process and merges
them before this final merge.

5. Conclusion

In our evaluation, we tested and performed a ROOT analysis on binary, not-splittable data files
and showed that we were able to use Hadoop as an alternative to PROOF. We tested the stability
of Hadoop with simulated network failures and saw a good handling of missing intermediate
results due to the speculative execution feature. Although the standard user management is
simple, in a group like ours it eliminated prevalent administration effort.

In evaluating the performance of our cluster, we saw a 10% to 20% reduced event rate compared
to PROOF. We concluded that this is due to the mentioned additional features and the fact, that
PROOF nativly uses ROOT and is optimized for ROOT analyses, whereas Hadoop is primarily
focused on processing large splitable data files, like text files. Besides, in our Hadoop schemas,
for each data file, a new ROOT process has to be started whereas PROOF used one ROOT
session to process multiple files. Therefore, starting overhead was minimized.

For an improvement on the data locality, it could be interesting to investigate the fair scheduler,
which can lead to a nearly 100% data locality as reported in [3].

References

[1] Apache Hadoop URL http://hadoop.apache.org

[2] Apache Hadoop Streaming URL http://hadoop.apache.org/docs/stable/streaming.html

[3] Russo S A "Running a typical ROOT HEP analysis on Hadoop/MapReduce” (CHEP 2013, Beurs van Berlage,
Amsterdam) 17. October 2013, conference presentation

