
HEPDOOP: High-Energy Physics Analysis using

Hadoop

W. Bhimji, T.Bristow, A.Washbrook

SUPA School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK

E-mail: wbhimji@staffmail.ed.ac.uk

Abstract. We perform a LHC data analysis workflow using tools and data formats that
are commonly used in the “Big Data” community outside High Energy Physics (HEP). These
include Apache Avro for serialisation to binary files, Pig and Hadoop for mass data processing
and Python Scikit-Learn for multi-variate analysis. Comparison is made with the same analysis
performed with current HEP tools in ROOT.

1. Introduction
“Big Data” has now moved beyond buzzword to business-as-usual in the private sector including
big names such as Yahoo, Twitter, Facebook, Amazon and Google. High-Energy Physics (HEP)
is often cited as the archetypal Big Data use case, however it currently shares very little of
the toolkit used in the private sector which is dominated by the Apache Hadoop ecosystem.
We use those tools to perform aspects of a HEP analysis as part of a longer term goal of
interaction between big data communities. For this study we use established tools with large
user communities (see below). We aim for performance that is good-enough (i.e. of the same
order as HEP tools rather than seeking to exceed it) and make ease-of-use also an important
consideration.

1.1. Technologies used
Hadoop is a framework “for the distributed processing of large data sets across clusters of
computers using simple programming models”[1]. It provides easy execution of MapReduce
programs [2] and the HDFS distributed filesystem [3].
Pig produces MapReduce programs for Hadoop using a query language called Pig Latin [4] which
offers [5] “ease of programming” for parallel execution of tasks, “optimisation opportunities” as
task execution is optimised automatically, and “extensibility” through User Defined Functions
(UDF)s.
Avro [6] is a file-based binary-format data serialization system. It relies on schemas but these
are stored in the file which are thus self-describing. Files are compressed, with a choice of
codecs, and tools for reading/writing are available in several languages including Pig. It is not
a columnar store, though these formats are moving in that direction following Google’s Dremel
paper [7]. Parquet [8] is perhaps the best documented of the column-oriented products but was
still considered too immature for the initial stage of this project.
Scikit-Learn [9] is a mature, well-documented and fully-featured machine learning package

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 022004 doi:10.1088/1742-6596/513/2/022004

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1

for python built on NumPy and matplotlib. The later are also used for visualisation and
histogramming in this project.
ROOT [10] [11] is the most commonly used data analysis technology in HEP both for data
structures and the analysis toolkit. A number of tools have been developed for ROOT including
TMVA [12][13] for multi-variate analysis.

2. HEP Analysis Use-case
An important workflow within HEP analysis is illustrated in figure 1. This illustation uses both
terms employed in HEP but also more generally applicable titles for comparison with alternative
disciplines. These stages are discussed in the sections that follow.

Hepdoop:
High-Energy Physics Analysis using Hadoop

Introduction
“Big Data” is now business-as-usual in the private sector including big
names such as Twitter, Facebook, Amazon and Google. High-Energy
Physics (HEP) is often cited as the archetypal “Big Data” use case,
however it currently shares very little of the toolkit used in the private
sector which is dominated by the Apache Hadoop “ecosystem”. We
use those tools to perform aspects of a HEP analysis as part of a
longer term goal of interaction between big data communities.
For this study we use established tools with large user communities
(see box alongside). We aim for performance that is good-enough (i.e.
of the same order as HEP tools rather than seeking to exceed it) and
make ease-of-use also an important consideration.

HEP Analysis Use-case
Analysis stages are given below with generic titles and HEP terms.

Data Filtering
We use data from the ATLAS experiment in the popular centrally-
produced SMWZ_D3PD format which contains ROOT TTrees with
5860 branches of simple types and vectors (~65 KB/event). Due to the
large file sizes, an analysis group may conduct a “Filtering” stage. The
output is in the same structure but with a selection of events and
reduction of branches. We use ~1TB of input data which is converted
into zlib-compressed Avro. We apply a selection motivated by an
analysis of Higgs Boson decays to two b-quarks (H to bb) which has
an event selection efficiency of 5% and selects 109 branches.

Illustrative Pig code is shown
to the left. Filtering is done
with simple comparisons and
more complex selections via a
python UDF. For the latter, the
same code can be reused in
both Pig and ROOT.

Performance
The Hadoop processing
time versus the size of the
input dataset, when run on
a 5 0 0 c o r e H a d o o p
installation at CERN, is
shown to the right. The
ROOT-based tool centrally
available on ATLAS for this
purpose (filter-and-merge)
has similar 270s run time on
a single 760 MB file.
However with custom ROOT code, reading only the branches used, we
were able to achieve a single-file run time of 30s and the application
could be run in parallel on a cluster of this sort, with a batch system or
using PROOF, possibly with better scaling than seen here for Hadoop.
We do also observe, however, an improvement of performance in
Hadoop/Avro when some large, unused, vector branches are removed
(leaving 2300 “branches” at 2.5KB/event) (red triangles above).

Data Mining
Filtered data is then “mined” by applying further linear selections (which
we implement in Pig) or a Multi-Variate Analysis (MVA) such as a
Boosted Decision Tree (BDT) (which we implement in scikit-learn). This
is run on the complete input data for the ATLAS H to bb analysis.
Illustrative code is shown here:
trainingData, trainingClasses
and testingData are NumPy
arrays that can either be read
from ROOT TTrees (using
rootpy [7]) or filled from Avro.

Using IPython[8] to enable
p a r a l l e l t r a i n i n g o n
samples, execution time in
Scikit is similar to TMVA.
Outputs of the BDT show
the same results as with
ROOT/TMVA - but this
package also allows for
alternative approaches.

Conclusion
Key components of a HEP analysis have been run using out-of-the-box
“Big data” tools on Hadoop. This enables use of wider resources such
as Amazon Elastic Map Reduce and can benefit from large user and
developer communities as well as further off-the-shelf tools for use in,
for example, provisioning, monitoring and scheduling.
The performance seen here for filtering is inferior to the ROOT-based
analysis, particularly in the case of large complex nested structures. To
address this issue, we are currently exploring the use of columnar
storage formats such as Parquet [9].

We perform a LHC data analysis workflow using tools and data formats that are commonly used in the “Big Data” community
outside HEP. These include Apache Avro for serialisation to binary files, Pig and Hadoop for mass data processing and Python
Scikit-Learn for multi-variate analysis. Comparison is made with the same analysis performed with current HEP tools in ROOT.

Data Filtering:
Skimming/Slimming

Data Mining:
Cut-optimisation / MVA

Data Visualisation:
Histogramming

REGISTER 'MySelections.py' using jython as myfuncs;
DEFINE AvroStorage
org.apache.pig.piggybank.storage.avro.AvroStorage;
input = LOAD '$input' USING AvroStorage();
data = FOREACH input GENERATE $branches;
outputdata = FILTER data BY MET_RefFinal_et > 45.0
AND myfuncs.passesJetSelection(jet_AntiKt4TopoEM)
AND ...
STORE outputdata INTO './results' USING AvroStorage();

Wahid Bhimji, Tim Bristow, Andrew Washbrook
 SUPA – School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom

Technologies used

Hadoop is a framework “for the distributed processing of large data sets across
clusters of computers using simple programming models”[1]. It provides easy
execution of MapReduce programs and the HDFS distributed filesystem.

Pig produces MapReduce programs for Hadoop using a query language called
Pig Latin which offers [2] “ease of programming” for parallel execution of tasks,
“optimisation opportunities” as task execution is optimised automatically and
“Extensibility” through User Defined Functions (UDF)s.

Avro [3] is a file-based binary-format data serialization system. It relies on
schemas but these are stored in the file which are thus self-describing. Files are
compressed, with a choice of codecs, and tools for reading/writing are available in
several languages including Pig.

Scikit-Learn [4] is a mature, well-documented and fully-featured machine
learning package for python built on NumPy and matplotlib. The later are also
used for visualisation and histogramming in this project.

ROOT [5] is the most commonly used data analysis technology in HEP both for
data structures and the analysis toolkit. A number of tools have been developed
for ROOT including TMVA [6] for multi-variate analysis.

References
[1] http://hadoop.apache.org/
[2] http://pig.apache.org/
[3] http://avro.apache.org/
[4] http://scikit-learn.org/

[5] http://root.cern.ch/
[6] http://tmva.sourceforge.net/
[7] http://www.rootpy.org/
[8] http://ipython.org/
[9] http://parquet.io/

from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import AdaBoostClassifier
ada =
AdaBoostClassifier(DecisionTreeClassifier(max_depth=4,
compute_importances=True,min_samples_split=2,min_s
amples_leaf=100),n_estimators=400, learning_rate=0.5,
algorithm="SAMME",compute_importances=True)
ada.fit(trainingData, trainingClasses)
return ada.decision_function(testingData)

Acknowledgements
Thanks to the CERN IT-DSS
group for use of Hadoop
resources.

Figure 1. Illustrative HEP analysis workflow.

3. Data Filtering
We use data from the ATLAS experiment in the popular, centrally-produced, SMWZ D3PD
format which contains ROOT TTrees with 5860 branches of simple types and vectors with a
total size of ≈65 KB/event. Due to the large file sizes, an analysis group will often conduct a
“Filtering” stage to reduce the volume of data used in further analysis. The output is in the
same structure but with a selection of events and reduction of branches. We use 1TB of input
data which is converted into zlib-compressed Avro files using a simple conversion script based on
the Avro python interface. We apply a selection motivated by an analysis of Higgs Boson decays
to two b-quarks (H→bb) which has an event selection efficiency of 5% and selects 109 branches
resulting in a file-size around 0.3% of the original. Illustrative Pig code is shown in figure 2.
Filtering is done with simple comparisons (such as MET_RefFinal_et in this example) and more
complex selections via a python UDF (myfuncs.passesJetSelection in this example). For the
UDFs, the same code can be reused in both Pig and ROOT.

REGISTER ’MySelections.py’ using jython as myfuncs;

DEFINE AvroStorage org.apache.pig.piggybank.storage.avro.AvroStorage;

input = LOAD ’$input’ USING AvroStorage();

data = FOREACH input GENERATE $branches;

outputdata = FILTER data BY MET_RefFinal_et > 45.0

AND myfuncs.passesJetSelection(jet_AntiKt4TopoEM)

AND ...

STORE outputdata INTO ’./results’ USING AvroStorage();

Figure 2. Illustrative PIG code for Data Filtering.

3.1. Performance
The Hadoop processing time versus the size of the input dataset, when run on a 500 core Hadoop
installation at CERN, is shown in figure 3. The ROOT-based tool centrally available on ATLAS
for this purpose (filter-and-merge) has similar 270s run time on a single 760 MB file. However
with custom ROOT code, reading only the branches used, we were able to achieve a single-file

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 022004 doi:10.1088/1742-6596/513/2/022004

2

run time of 30s and the application could be run in parallel on a cluster of this sort, with a batch
system or using PROOF, possibly with better scaling than seen here for Hadoop. We do also
observe, however, an improvement of performance in Hadoop/Avro when some large, unused,
vector branches are removed to leave 2300 “branches” at 2.5KB/event.

10-1 100 101 102 103

Input size (GB)

101

102

103

104

T
im

e
 (

s)

Time to process file/dataset

Pig/Avro: all branches
Pig/Avro: reduced branches
Root: filter-and-merge, single job
Root: optimised code, single job

Figure 3. Time taken to perform filtering in Pig for files with all branches from the D3PD (blue
squares) or when certain very large vector branches are removed (red triangles) together with
that for ROOT running on a single 760 MB file using the filter-and-merge tool (green circle) or
custom ROOT code reading only the branches of interest (yellow triangle).

4. Data Mining
Filtered data is then mined by applying further linear selections, which we implement in Pig, or
a Multi-Variate Analysis (MVA) such as a Boosted Decision Tree (BDT), which we implement in
scikit-learn. This is run on the complete input data for the ATLAS H→bb analysis. Illustrative
code is shown in figure 4, In that code, trainingData, trainingClasses and testingData are NumPy
arrays that can either be read from ROOT TTrees (using rootpy [14]) or filled from Avro using
the python interface.

from sklearn.tree import DecisionTreeClassifier

from sklearn.ensemble import AdaBoostClassifier

ada = AdaBoostClassifier(DecisionTreeClassifier(max_depth=4,compute_importances=True,

min_samples_split=2,min_samples_leaf=100),n_estimators=400, learning_rate=0.5,

algorithm="SAMME",compute_importances=True)

ada.fit(trainingData, trainingClasses)

return ada.decision_function(testingData)

Figure 4. Illustrative python MVA code

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 022004 doi:10.1088/1742-6596/513/2/022004

3

We use IPython[15] to enable parallel training on samples and achieve an execution time in
Scikit similar to that of TMVA: for the training of 4 BDTs Scikit takes a combined time of
around 180 ± 5 s while TMVA takes around 200 ± 5 s. Outputs of the BDT are shown in figure
5. We can recreate the same results for the analysis as obtained with ROOT/TMVA, but the
strength of this package is that it also allows for a wide range of alternative approaches.

Figure 5. Outputs from the scikit-learn MVA

5. Conclusions
Key components of a real HEP analysis have been run using out-of-the-box Big Data tools in
Hadoop and python. On advantage of this approach is that it can enable use of wider resources
such as Amazon Elastic Map Reduce as well as benefitting from large user and developer
communities and further off-the-shelf tools for use in, for example, provisioning, monitoring
and scheduling. The performance seen here for filtering is, however, significantly inferior to our
ROOT-based analysis, particularly in the case of large complex nested structures. To attempt
to address this issue, we are exploring the use of the columnar storage format Parquet [8].

Acknowledgments
Thanks to the CERN IT-DSS group for use of Hadoop resources.

References
[1] URL http://hadoop.apache.org/ (Accessed October 2013)
[2] Dean, J. and Ghemawat, S. 2008 MapReduce: simplified data processing on large clusters Communications

of the ACM 51(1) 107-113
[3] Shvachko, K. et al. 2010 The hadoop distributed file system Proceedings of IEEE 26th Symposium on Mass

Storage Systems and Technologies (MSST) 1-10
[4] Olston, C., et al. 2008 Pig latin: a not-so-foreign language for data processing Proceedings of the 2008 ACM

SIGMOD international conference on Management of data 1099-1110
[5] URL http://pig.apache.org/ (Accessed October 2013)
[6] URL http://avro.apache.org/ (Accessed October 2013)
[7] Melnik, S. et al. 2010 Dremel: interactive analysis of web-scale datasets Proceedings of the VLDB Endowment

3(1-2) 330-339
[8] URL http://parquet.io/ (Accessed October 2013)
[9] URL http://scikit-learn.org/ (Accessed October 2013)
[10] Brun R and Rademakers F 1997 Nucl. Instrum. Meth. A 389 81
[11] URL http://root.cern.ch/ (Accessed October 2013)
[12] Hoecker, A. et al. 2007 TMVA - Toolkit for Multivariate Data Analysis arXiv:physics/0703039

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 022004 doi:10.1088/1742-6596/513/2/022004

4

[13] URL http://tmva.sourceforge.net/ (Accessed October 2013)
[14] URL http://www.rootpy.org/ (Accessed October 2013)
[15] Perez, F., and Granger, B. E. 2007 IPython: a system for interactive scientific computing Computing in

Science and Engineering 9(3) 21-29

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 022004 doi:10.1088/1742-6596/513/2/022004

5

