20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 012008 doi:10.1088/1742-6596/513/1/012008

Implementation of a PC-based Level 0 Trigger
Processor for the NA62 Experiment

M Pivanti', S F Schifano?, P Dalpiaz', E Gamberini!, A Gianoli', M
Sozzi?

! Physics Dept and INFN, Ferrara University, V. Saragat 1, 44122 Ferrara, Italy

2 Mathematics and Informatics Dept and INFN, Ferrara University, V. Saragat 1, 44122

Ferrara, Italy
3 Physics Dept and INFN, Pisa University, Largo Pontecorvo 3, 56127 Pisa, Italy

E-mail: gianoli@fe.infn.it

Abstract.

Lowest level (sometimes called Level 0, LO) triggers are fundamental components in high
energy physics experiments, and yet they are quite often custom-made. Even when using FPGAs
to achieve better flexibility in modifying and maintaining, small changes require hardware re-
configuration and changes to the algorithm logic could be constrained by the hardware. For
these reasons we are developing for the NA62 experiment at CERN a LO-trigger based on the
use of a PC and commodity FPGA development board.

1. Introduction

The performance of ”level 0” (LO0) triggers is crucial to reduce and appropriately select the large
amount of data produced by detectors in high energy physics experiments. This selection must
be accomplished as fast as possible since data staging is a critical issue and the memory for
data staging is a critical resource. For example in the NA62 experiment at CERN the event
rate is estimated at about 10 MHz and the LO-trigger should reduce it by a factor of 10 within
a time budget limit of 1 ms. So far, the most common approach to the development of a L0
trigger system was based on custom hardware processors, so event filtering is performed by
algorithms implemented in hardware. More recently, the implementation of custom processors
has been based on FPGA devices, whose hardware functionalities can be configured using specific
programming languages. The use of FPGAs offers greater flexibility in maintaining, modifying,
improving filter algorithms, however even small changes require a hardware re-configuration of
the systems, and changes to the algorithm logic can be limited by hardware constraints that have
not been foreseen at development time. So, even if this approach guarantees fast processing,
strong limitations still remain in the available flexibility when changing filtering algorithms on
the fly or testing more filtering conditions at the same time, as required during the data-taking
phase of the experiment.

In this paper we present an innovative approach in the implementation of a LO-trigger system
based on the use of a commodity PC, describing the architecture we are developing for the
NAG62 experiment at CERN. Data streams coming from the detectors are collected by an FPGA
installed on a PCI-Express board plugged on a commodity PC. The FPGA receives data from

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
BY of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 012008 doi:10.1088/1742-6596/513/1/012008

detectors via Gigabyte Ethernet (GbE) data links, and stores them into the main memory of
the PC. The PC then performs the filter algorithms on data available on its own memory, and
writes back results to the FPGA for routing to the appropriate destination.

2. NAG62 requirements and DAQ architecture

The goal of the NA62 experiment at the CERN SPS[1] is to measure the branching ratio of
the ultra-rare decay of the charged kaon K™ — 7™vw. This decay, together with its companion
K% — mv7, can be predicted to unusually high accuracy in the Standard Model, making them
powerful probes for new physics beyond the Standard Model. The tiny expected branching
ratios, in the 107!0 range, are the price to pay for their extraordinary sensitivity and pose great
challenges to their experimental determination.

We refer the reader to [2] for a detailed description of the experiment and we concentrate
here on the DAQ requirements. Since the experiment is a rare-decay one, the trigger and data
acquisition systems need to be high performance ones.

NAG62 is a fixed target experiment. Compared to collider ones our requirements for radiation
hard electronics are less stringent. The space available is also less of a problem, giving us more
options on where to put the electronics. Finally looking at the beam structure, our beam is
not bunched in time but follows a low duty-cycle spill structure (typically 9 s of beam every 40
s). The rate of events in the decay region is totally dominated by background and according to
simulations the rate on the main detectors is of the order of 10MHz. Since we do not need a fine
time synchronization for the events, we can use any frequency above this for the free running
master clock. We chose the same frequency as LHC experiments, i.e. 40,07897 MHz [4].

Software triggering would present great advantages in terms of flexibility, but a completely
triggerless approach (full continuous readout) was deemed not a realistic option because of the
tens of thousands channels involved, the aforementioned expected rates and an expected event
size of the order of 30 kB. A scheme with a single hardware trigger level (L0) was thus adopted,
while following second and third stages (L1 and L2) will be completely software based exploiting
PC-farms with large input bandwitdh. This leads us to a unified Trigger and Data AcQusition
(TDAQ) system [2], which assembles trigger information from readout-ready digitized data in
a simple and cost-effective way. For most of the detectors involved, the building block is the
TEL62 Trigger and Data Acquisition board[3].

Figure 1. Schematic draw-
ing of the NA62 trigger and
DAQ system. All detectors’
connections are gigabit ether-
net links.

—— L0 trigger
- Trigger primitives
=== Data

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 012008 doi:10.1088/1742-6596/513/1/012008

The requirement for the L0 are to reduce the total trigger rate to ~ 1 MHz with a maximum
latency of 1 ms using information coming from the charged hodoscope (CHOD), Cherenkov
(RICH), Photon Veto (LAV), Electro-magnetic calorimeter (LKr) and Muon Veto (MUYV)
detectors. The trigger primitives from each sub-detector involved in the trigger decision are
generated in the TEL62 boards and sent out asynchronously via multiple standard gigabit
ethernet connections with accompanying high-resolution (few ns) time-stamp data. The default
(primary trigger) algorithm does not require to reconstruct any track o cherenkov ring, but
has to re-align in time the sub-detector primitives. Data from all sub-detectors will be stored
in front-end buffers (such as those present on the TEL62) during L0 evaluation. In case of a
positive L0 trigger decision, the L0 will be sent to the TEL62 boards by the Trigger and Timing
Control (TTC) system[4] after a fixed latency. The L0 latency is constant and the sub-detectors
will send their data to a dedicated PC farm for L1 and L2 selection.

3. LO Trigger Processor

Normally a critical component like the L0 Trigger Processor (LOTP) is a full custom device.
As such it requires a certain amount of specific knowledges both from the developers for its
implementation and from end-users to maintain its application logic. The collaboration decided
to investigate the possibility of relying only on commodity components. We are interested not
only in reducing costs and development time, but also in simplifying future upgrades during
the experiment lifecycle. We are especially interested in the capability to modify/refine trigger
evaluation ”on the fly”, without hardware intervention. Our goal is to allow ”not-hardware-
aware” users to take care of primitives analysis using a high-level language.

To achieve this result we investigated the feasibility to develop the LOTP using a common PC
running the Linux operating system. Due to the need to interface the PC with 6 detectors via
Gbit Ethernet (GbE) links, managing with the most possible efficiency the primitives receiving
and decoding, we decided to use a commercial FPGA development board board that implements
8 Gbit Ethernet interfaces and implements a PCI Express link to deliver data directly to the
main-memory of the PC.

The PC used hosts an Intel core-i7 3930K CPU and 16GB of RAM DDR3@1333, while for
the FPGA part we used a Terasic DE4 developement kit that features an Altera Stratix-IV
GX230 FPGA, 4 integrated GbE links, with the possibility to add 4 more GbE links using two
expansion board, and one 8x PCI Express Gen. 2 link to interface with the PC. The operating
system we use for the PC is Scientific Linux 6.4 for which we developed a kernel module (Drv)
for low-level access to the device (development board), a lightweight library (Lib) built on top
of Drv to export device-features to users, and on top of Lib we developed an user application
(App) to test all the functionalities of the device.

4. Implementation

In order to understand if a PC-based LOTP could fit the timing constraints, the first step is
to evaluate if the Round-Trip Time (RTT) in the path FPGA to CPU and vice-versa could be
kept significantly lower than the given time-budget of 1 ms in order to i) receive primitives, ii)
evaluate trigger conditions, iii) send back a trigger.

To evaluate the above mentioned RTT in a reliable manner, we developed a firmware/software
system that generates fake primitives inside the FPGA and send them to the main memory of
the PC. The CPU analyzes the primitives and send-back to the FPGA the timestamp of each
primitive, that are then compared with the current timestamp inside the FPGA, the difference
is the RT'T. Figure 2 shows the setup.

Going deep into the design, the firmware implements two generators: one for timestamps
needed to calculate the RTT (TsGen); the other for data needed to evaluate the trigger condition
(PrGen). The TsGen is simply a counter that increments at each FPGA clock cycle (4 ns), while

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 012008 doi:10.1088/1742-6596/513/1/012008

credit buffer notify buffer
CPU

E E.......... ssssssssssssssssnaasE Figure 2. Schematic diagram Of

i the firmware/software: the FPGA
-crdFIFO

firmware is made of a “generator”
module (containing timestamp and
primitive generators) and a PCle
interface module; the device driver
on the PC prepares and manages the
J/ memory to be used by the FPGA.

\ 4
\4

1| Thresholds dataGEN
H Regs

Altera GX230 @ 250 MHz
A\

dataRead

the PrGen generates 6 streams of primitives (simulating 6 sub-detectors participating to the L0
trigger) that are queued into separated FIFOs, waiting to be sent.

The so-called Primitives-Consumer (PrCon), must interact with the PCI Express Interface
(PCle) to deliver primitives to main PC memory, requiring the physical address of the buffers
allocated for the purpose. These addresses are provided by the PC and stored into the Credit-
FIFO (CrdFifo). One credit (Crd) contains i) the physical address at where the buffer starts in
main-memory ii) the buffer size iii) and the Notify-index.

As primitives begin to be generated, PrCon extracts one credit and uses its informations
to produce packets to be sent over the PCle, composed by 6x8 Bytes primitives, 1x8 Bytes
timestamp, 1x8 Bytes additional informations.

The size of 64Bytes for PCle packets is equal to the “cache line size” of the CPU, allowing
the primitives-transactions-management to be the most efficient as possible.

The PCle module on this design is an Altera Intellectual Property that exports a simplified
streaming interface to the users, called Avalon-Streaming]5].

The buffers in main-memory are allocated in kernel-space by Drv, granting “continuos areas”
in physical memory made directly accessible to user-applications via “mmap()” system-call. In
this way the application can have a direct access to them, and avoid the overhead given by
kernel-calls each time the buffers must be accessed.

Once the primitives are stored into main-memory, the test-application accesses them to
evaluate a trigger condition and send-back to the FPGA the timestamp included into the packet.
The FPGA compares such timestamp with the actual one to compute the RTT. The RTT value
is then compared to a set of thresholds, and the corresponding counter is increased by one: at
the end of a simulation run the counters provide us the RTT distribution.

5. Results

To measure the RTT we prepared a simplified set of trigger primitives and selection algorithm.
The simplification lies in the trigger primitives being “time aligned” and the selection algorithm
checking just one trigger condition, skipping the event as soon as a negative condition is found
(e.g. there is a signal in one sub-detector where the absence of any signal is required). Figure 3
shows the distribution of RT'T values for a single 120 s long run. This measurement was repeated
several times to check the stability of the average value and the result is shown in figure 4.

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing

Journal of Physics: Conference Series 513 (2014) 012008 doi:10.1088/1742-6596/513/1/012008
1e+12 T T T T T T T T 25
Te+11 < ol * ’ .
1e+10 i -.-. - - - -- -.-.-:- -.-- -.---.-.- .-_-._-- -_-
k] o 151 * -
2 1es09 8
E 8
& E ol
1e+08
1e+07 5t
16406 P IS S RN NS SN S S SN N
0-10 11-50 51-100 101-200 201-500501-1000001-2000 2000+ 0 10 20 30 40 50 60 70 80 90 100
Ranges (microsec) run#

Figure 3. Distribution of RTT values for Figure 4. Distribution of average RTT values
a single run, one trigger condition, primitives for a series of runs, one trigger condition,

time aligned primitives time aligned

450000 450000
400000 400000
350000 350000
300000 300000
250000 250000

S 200000 S 200000
150000 150000
100000 100000
50000 50000 .

) - o. . o -
0..10 10..20 20..30 30..40 40..50 50 .. 60 60 .. 70 70 .. 0..10 10..20 20..30 30..40 40 .. 50 50 .. 60 60..70 70.
RTT (us) RTT (us)

Figure 5. Single run RTT distribution Figure 6. Single run RTT distribution using
using polling synchronization, eight trigger credit-notify synchronization, eight trigger
conditions, primitives not time aligned conditions, primitives not time aligned

A more detailed test has been made, using a realistic set of trigger primitive (equivalent to
about 50 ms of data) and a more sophisticated selection algorithm. This time the primitives
are not “time aligned”, meaning that the selection algorithm has to align them. Moreover
the algorithm was modified to look for more than one trigger. As a further matter, we also
investigated if the credit-notify method to synchronize FPGA and CPU is indeed efficient,
replacing it with a polling method. The results are shown in figures 5 and 6. Even if the polling
method has a higher first bin, it presents a longer tail with RTT of the order of 70 us for the
worst case, compared to the credit-notify method which has a worst case RT'T of the order of
40 ps.

6. Conclusions

LO trigger systems are normally custom-made hardware systems. We investigated the possibility
to implement the LO Trigger Processor for the NA62 experiment at CERN based on commodity,
off the shelf hardware and proved the feasibility of the project. The design and the
implementation of it was briefly described, together with the results of the tests on the system
latency.

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 012008 doi:10.1088/1742-6596/513/1/012008

Acknowledgments
This work has been done in the framework of the COKA project of INFN.

References

[1] The NA62 Collaboration Proposal to measure the Rare Decay K™ — ntvw at the CERN SPS CERN SPSC-
2005-013

[2] The NA62 Collaboration 2010 NA62 Technical Design Document (Geneva: Cern)

[3] Angelucci B, Pedreschi E, Sozzi M, Spinella F 2012 JINST 7 C02046

[4] Taylor B G (CERN RD12 collaboration) Timing distribution at the LHC, in: Eighth Workshop on Electronics
fo LHC Experiments, Colmar, 9-13 September 2002.

[5] Awvalon Interface Specifications Altera MNL-AVABUSREF-2.1, May 2013

