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Abstract. We present some algebraic models for the quantum oscillator based upon Lie
superalgebras. The Hamiltonian, position and momentum operator are identified as elements of
the Lie superalgebra, and then the emphasis is on the spectral analysis of these elements in Lie
superalgebra representations. The first example is the Heisenberg-Weyl superalgebra sh(2|2),
which is considered as a “toy model”. The representation considered is the Fock representation.
The position operator has a discrete spectrum in this Fock representation, and the corresponding
wavefunctions are in terms of Charlier polynomials. The second example is sl(2|1), where we
construct a class of discrete series representations explicitly. The spectral analysis of the position
operator in these representations is an interesting problem, and gives rise to discrete position
wavefunctions given in terms of Meixner polynomials. This model is more fundamental, since
it contains the paraboson oscillator and the canonical oscillator as special cases.

1. Introduction
In all textbooks on quantum mechanics, it is described how the position wavefunctions of the
one-dimensional canonical quantum oscillator are given in terms of Hermite polynomials. This
is a first example of the relation between oscillator models and special functions. One of the
alternative oscillator models is the so-called paraboson oscillator [1, 2], and here the position
wavefunctions are given in terms of Laguerre polynomials [3, 4].

Both of these well-known oscillator models have an algebraic description as well: for the
canonical oscillator this is in terms of the oscillator Lie algebra (and its Fock representation);
for the paraboson oscillator this is in terms of the Lie superalgebra osp(1|2) and its positive
discrete series representations.

During the last years there has been increasing interest in other algebraic oscillator models,
some of them inspired by applications in quantum optics or signal analysis. For these new
oscillator models, the spectrum of the position operator can be continuous or discrete (with
finite or infinite support). In the case of a discrete spectrum, one is faced with the interesting
phenomenon of “discrete position wavefunctions”, and there is a relation with discrete orthogonal
polynomials.

The paper that triggered most of the work in this area is [5], where an oscillator model
based on the Lie algebra su(2) was introduced. In this model, the position wavefunctions are
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indeed discrete and expressed in terms of symmetric Krawtchouk polynomials. This model
was extended by an extra parameter in [6, 7], with an underlying deformed su(2) algebra, and
position wavefunctions given by means of Hahn polynomials.

In the current contribution, we wish to present some examples of quantum oscillator models
where the underlying algebra is a Lie superalgebra. For the first example, the underlying Lie
superalgebra is the Heisenberg-Weyl superalgebra sh(2|2), an algebra generated by one boson
and one fermion pair. We study the spectral analysis of a position operator q̂ in the Fock
space representation of sh(2|2). This operator has an infinite but discrete spectrum, and the
corresponding position wavefunctions are given in terms of Charlier polynomials. We observe
that also for an underlying orthosymplectic Lie superalgebra osp(3|2), one would get the same
position wavefunctions. This sh(2|2) model is interesting because of its simplicity, but from the
physical point of view it is maybe just a “toy model”. The second example presented here has
sl(2|1) as underlying Lie superalgebra. In this model, the spectrum of a position operator can
be discrete or continuous, depending on the value of a parameter γ. In the discrete case, the
position wavefunctions are related to Meixner polynomials. In the continuous case, the position
wavefunction reduce to the mentioned paraboson wavefunctions and thus, for a specific value
of a representation parameter, to the canonical oscillator. Because of these special cases, the
canonical oscillator is naturally embedded in the sl(2|1) model, and it can be considered as more
fundamental.

The examples presented here have been discussed in two previous papers. The sh(2|2) toy
model was analyzed in [8], and the sl(2|1) in [9]. The purpose of the current contribution is to
briefly present these examples again, compare them, give a relation to an osp(3|2) model, and
discuss some of the most significant properties.

To finalize this introduction, let us briefly recall the context of “algebraic oscillator models.”
For these models, one requires the same dynamics as for the classical or quantum oscillator, but
the operators corresponding to position, momentum and Hamiltonian can be elements of some
algebra different from the traditional Heisenberg (or oscillator) Lie algebra [5, 10, 11, 6, 12].
In the one-dimensional case, there are three (essentially self-adjoint) operators involved: the

position operator q̂, its corresponding momentum operator p̂ and the Hamiltonian Ĥ which is
the generator of time evolution. The main requirement is that these operators should satisfy
the Hamilton-Lie equations (or the compatibility of Hamilton’s equations with the Heisenberg
equations):

[Ĥ, q̂] = −ip̂, [Ĥ, p̂] = iq̂, (1)

in units with mass and frequency both equal to 1, and ~ = 1. Contrary to the canonical case,
the commutator [q̂, p̂] = i is not required. Apart from (1) and the self-adjointness, it is then
common to require the following conditions [5]:

• all operators q̂, p̂, Ĥ belong to some Lie algebra or Lie superalgebra A;

• the spectrum of Ĥ in (unitary) representations of A is equidistant.

2. The sh(2|2) oscillator model
Consider a bosonic creation and annihilation operator b± with commutation relation

[b−, b+] = 1, (2)

and a fermionic creation and annihilation operator a± with anticommutation relations

{a−, a−} = {a+, a+} = 0, {a−, a+} = 1. (3)

Let us also assume that the two sets of operators commute with each other:

[bξ, aη] = 0, ξ, η ∈ {+,−}. (4)
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Then the Lie superalgebra generated by the even elements 1, b+, b− and the odd elements a+, a−

is known as the Heisenberg-Weyl superalgebra sh(2|2) [13, 14]. It will be more convenient to
work with a subalgebra of the enveloping algebra U(sh(2|2)), namely the Lie superalgebra S
with four odd basis elements

F+ = a+, F− = a−, Q+ = b+a−, Q− = b−a+, (5)

and even basis elements

E+ = b+, E− = b−, H = b+b− + a+a− and 1. (6)

The complete set of (anti)commutation relations among the elements of S is easy to determine [8].
The common Fock representation V of sh(2|2) is generated by a vacuum vector |0⟩ and by the
relations b−|0⟩ = a−|0⟩ = 0. An orthonormal basis of V is given by the vectors

(a+)j
(b+)m√

m!
|0⟩, m ∈ {0, 1, 2, . . .}, j ∈ {0, 1}.

It will be convenient to write these vectors as |n⟩, with n = 0, 1, 2, . . ., so V can be identified
with the Hilbert space ℓ2(Z+):

|2m⟩ = (b+)m√
m!

|0⟩, |2m+ 1⟩ = a+
(b+)m√

m!
|0⟩. (7)

Then the action of all basis elements of S on these basis vectors is easy to determine. In
particular, for the odd elements one finds:

F+|n⟩ = 1

2
(1 + (−1)n)|n+ 1⟩, F−|n⟩ = 1

2
(1− (−1)n)|n− 1⟩,

Q+|n⟩ = 1

2
(1− (−1)n)

√
n+ 1

2
|n+ 1⟩, Q−|n⟩ = 1

2
(1 + (−1)n)

√
n

2
|n− 1⟩. (8)

Note also that the usual conjugacy for the creation and annihilation operators leads to a natural
⋆-structure for S, and the Fock representation is unitary with respect to this ⋆-structure.

In [8], we constructed an algebraic oscillator model with S as underlying Lie superalgebra.
More precisely, using the reflection operator R with action R|n⟩ = (−1)n|n⟩, the Hamiltonian,
position and momentum operators of the model are given by

Ĥ = 2H +
1

2
R, (9)

q̂ = γF+ +Q+ + γF− +Q−, (10)

p̂ = iγF+ + iQ+ − iγF− − iQ−. (11)

The spectrum of Ĥ in V coincides with that of the canonical oscillator, Ĥ|n⟩ = (n+ 1
2)|n⟩, and

the three self-adjoint operators satisfy (1). Herein, γ is a free parameter. Up to an arbitrary
factor, (10) is the most general self-adjoint odd element in the Lie superalgebra S. The main
effort then goes to the spectral analysis of the position operator q̂, which is represented by an
infinite symmetric tridiagonal matrix in the ordered basis {|n⟩, n = 0, 1, 2, . . .} of the Fock
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space V :

q̂ =



0 γ

γ 0
√
1√

1 0 γ

γ 0
√
2√

2 0 γ

γ 0
√
3

√
3 0

. . .
. . .

. . .


. (12)

For γ > 0, such a matrix is a Jacobi matrix, and its spectral theory is related to orthogonal
polynomials [15, 16, 17]. One should construct polynomials pn(x) of degree n in x, with
p−1(x) = 0, p0(x) = 1, and recurrence relation determined by the matrix (12),

xp2n(x) =
√
np2n−1(x) + γp2n+1(x),

xp2n+1(x) = γp2n(x) +
√
n+ 1p2n+2(x), (n = 0, 1, 2, . . .). (13)

If certain conditions are satisfied, the support of the weight function w(x) for these polynomials
determines the spectrum of the operator q̂. Furthermore, for a real value x belonging to this
support, the corresponding formal eigenvector of q̂ is given by

v(x) =
∞∑
n=0

pn(x) |n⟩. (14)

In [8] we have shown that the solution of this recurrence relation leads to Charlier polynomials
Cn(x; a), defined by [18, 19, 20]:

Cn(x; a) = 2F0

(
−n,−x

−
;−1

a

)
. (15)

More particularly, for γ ̸= 0, the solution of (13) is

p2n(x) =
(−γ)n√

n!
Cn(x

2; γ2), p2n+1(x) = −(−γ)n−1

√
n!

xCn(x
2 − 1; γ2). (16)

Then, using the orthogonality of Charlier polynomials [18], one deduces that the polynomials
pn(x) satisfy a discrete orthogonality relation:∑

x∈S
w(x)pn(x)pm(x) = eγ

2
δmn, (17)

where
S = {±

√
k | k ∈ Z+} = {. . . ,−

√
3,−

√
2,−1, 0, 1,

√
2,
√
3, . . .}, (18)

and where the weight function is given by

w(x) =
1

2

γ2k

k!
for x = ±

√
k (k = 1, 2, 3, . . .) (19)

and by w(x) = 1 for x = 0. So (18) gives the position spectrum.
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It will be convenient to normalize the polynomials, and consider the corresponding
orthonormal functions p̃n(x) satisfying

∑
x∈S p̃m(x)p̃n(x) = δmn. Then the normalized

eigenvectors of q̂, for an eigenvalue x ∈ S, are given by

ṽ(x) =
∞∑
n=0

p̃n(x)|n⟩. (20)

In such an expression, the overlap between the normalized q̂-eigenvectors (20) and the Ĥ-eigen-

vectors |n⟩ can be interpreted as the position wavefunctions and will be denoted by φ
(γ)
n (x). So

these are discrete position wavefunctions, with support S, given by

φ(γ)
n (x) = p̃n(x), (21)

where x belongs to S. The parameter γ originates from the freedom in choosing q̂, in (10).

In Figure 1 of [8], one can find example plots of φ
(γ)
n (x), for certain values of n and of γ.

So these are discrete plots, with the wavefunction consisting of “dots” positioned at ±
√
k

(k = {0, 1, 2, 3, . . .}). The shape of these wavefunctions depends on the value of γ. For
γ < 1, the shape is close to a discrete version of the normalized Hermite wavefunctions of
the canonical oscillator. As γ increases (γ > 1), the shape is closer to a discrete version of the
paraboson wavefunctions. Note that these observation are just descriptive. For actual limits of
the wavefunctions we refer to [8].

An additional remark relates the current structure also to the Lie superalgebra osp(3|2).
Indeed, consider the superalgebra generated by the same elements a± and b± satisfying (3)
and (2), but with a different grading: a± are even elements, b± are odd elements, and they
mutually anticommute:

{bξ, aη} = 0, ξ, η ∈ {+,−}. (22)

It is known that the superalgebra generated by these elements and relations is the enveloping
algebra of osp(3|2) [21]. So for osp(3|2) one can construct a similar Fock space with the same
basis vectors (7). In this representation space, the operator γa+ + γa− + b+a− + a+b− has the
same action as (10), so its spectrum and spectral analysis is the same. Note, however, that we
are now working in a completely different superalgebra, namely osp(3|2). In this context, the
operator γa+ + γa− + b+a− + a+b− does not have a direct meaning as a position operator: in
fact, it is a linear combination of both even and odd elements of osp(3|2).

To conclude this section, note that we are certainly not the first to relate Charlier polynomials
to quantum oscillators. They have been related to the Weyl algebra in [22, 23], and appear
as overlap coefficients between eigenvectors of a number operator and a “shifted” number
operator [23]. In [24] some finite shift operators were defined closely related to q̂ and p̂,
with a spectral analysis also in terms of Charlier polynomials. Still, it should be noticed
that the operators (10)-(11) studied here are different from the ones investigated earlier in
the literature, and the solution in terms of Charlier polynomials uses quite different properties
of these polynomials.

3. The sl(2|1) oscillator model
The example described in this section has been analyzed in detail in [9]. The idea is the same
as in the previous section, but now we work with a different Lie superalgebra, which turns out
to be more fundamental. This superalgebra is sl(2|1), which has a basis consisting of four odd
(or ‘fermionic’) elements F+, F−, G+, G− and four even (or ‘bosonic’) elements H,E+, E−, Z,
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given by

F+ = e32, G+ = e13, F− = e31, G− = e23, (23)

H =
1

2
(e11 − e22), E+ = e12, E− = e21, Z =

1

2
(e11 + e22) + e33 (24)

in terms (graded) 3×3 Weyl matrices eij . From this matrix form, the Lie superalgebra brackets
(i.e. commutators and anti-commutators) can be deduced (see [25, p. 261], [26] or [12]).

sl(2|1) has both finite and infinite-dimensional irreducible representations, and the unitarity
of these representations depends on the choice of a ⋆-structure (or an adjoint operation) on the
Lie superalgebra. Here this is:

Z† = Z, H† = H, (E±)† = −E∓, (F±)† = ∓G∓, (G±)† = ±F∓, (25)

and for this ⋆-structure the finite-dimensional representations are not unitary. But one can
construct a class of infinite-dimensional positive discrete series representations of sl(2|1), Πβ,
labeled by β > 0, which are unitary [9]. The representation space is ℓ2(Z+) equipped with an
orthonormal basis |β, n⟩ (n = 0, 1, 2, . . .), i.e. ⟨β,m|β, n⟩ = δm,n. For the actions of the sl(2|1)
basis elements on these vectors, it is handy to use the following “even” and “odd” functions,
defined on integers n:

E(n) = 1 if n is even and 0 otherwise; O(n) = 1 if n is odd and 0 otherwise. (26)

Let us just give the actions of the odd generators here:

F+|β, n⟩ = E(n)
√

β +
n

2
|β, n+ 1⟩, F−|β, n⟩ = E(n)

√
n

2
|β, n− 1⟩,

G+|β, n⟩ = O(n)

√
n+ 1

2
|β, n+ 1⟩, G−|β, n⟩ = −O(n)

√
β +

n− 1

2
|β, n− 1⟩. (27)

The verification that this leads to a unitary irreducible representation is given in [9].
Just as before, we can construct a model by identifying three self-adjoint operators

Ĥ = 2H +
1

2
− β, (28)

q̂ = F+ + γG+ −G− + γF−, (29)

p̂ = i(F+ + γG+ +G− − γF−). (30)

In the representation Πβ, the spectrum of Ĥ coincides with that of the canonical oscillator, and
the three operators satisfy (1). Again, in (29), γ is a free parameter; the choice of the position
operator q̂ is such that it is (up to a factor) the most general self-adjoint odd element of sl(2|1).
Then the form of p̂ follows from (1). In the (ordered) basis {|β, n⟩, n = 0, 1, 2, . . .}, the operator
q̂ is represented by an infinite symmetric tridiagonal matrix Mq:

Mq =



0 R0

R0 0 S1

S1 0 R1

R1 0 S2

S2 0
. . .

. . .
. . .


, (31)
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where
Rn =

√
β + n, Sn = γ

√
n (n = 0, 1, 2, . . .). (32)

For γ > 0, such a matrix is a Jacobi matrix, and its spectral theory has been discussed in [9].
Like in the previous section, one should first construct polynomials with a recurrence relation
governed by the matrix (31), i.e. with p−1(x) = 0, p0(x) = 1, and

xp2n(x) = Snp2n−1(x) +Rnp2n+1(x),

xp2n+1(x) = Rnp2n(x) + Sn+1p2n+2(x), (n = 0, 1, 2, . . .). (33)

Such polynomials are orthogonal for some positive weight function w(x), and the spectrum of
Mq (or of q̂) is the support of this weight function. Furthermore, for a real value x belonging to
this support, the corresponding formal eigenvector of q̂ is given by

v(x) =

∞∑
n=0

pn(x) |β, n⟩. (34)

In the current case, the solution of (33) depends on the value of γ. When γ2 ̸= 1, the solution
of the recurrence relations (33) is given by [9]

p2n(x) = (−γ)−n

√
(β)n
n!

2F1

(
−n, x2

1−γ2

β
; 1− γ2

)
,

p2n+1(x) = x(−γ)−n

√
(β + 1)n

n!β
2F1

(
−n, x2

1−γ2 + 1

β + 1
; 1− γ2

)
. (35)

When γ2 = 1, the solution is of a different type and given by [9]

p2n(x) = (−γ)n
√

(β)n
n!

1F1

(
−n

β
;x2
)
,

p2n+1(x) = x(−γ)n

√
(β + 1)n

n!β
1F1

(
−n

β + 1
;x2
)
. (36)

In the first case, these polynomials can be related to the Meixner polynomial Mn(k;β, c) of
degree n in k, with parameters β and c [18, 19, 20]:

Mn(k;β, c) = 2F1

(
−n,−k

β
; 1− 1

c

)
, (37)

and these satisfy a discrete orthogonality. In the second case (γ2 = 1) these polynomials are
related to Laguerre polynomials, and their orthogonality is continuous. For technical reasons,
the case γ2 ̸= 1 should be split in two subcases (|γ| < 1 and |γ| > 1), and we shall consider only
one of them. For |γ| > 1, the polynomials pn(x) satisfy a discrete orthogonality relation:

∑
x∈S1

w(x)pn(x)pm(x) =

(
γ2

γ2 − 1

)β

δmn, (38)

where
S1 = {±

√
γ2 − 1

√
k | k ∈ Z+}, (39)
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and where the weight function is given by

w(x) =
1

2
(1 + δk,0)

(β)k
k!

γ−2k for x = ±
√

γ2 − 1
√
k (k = 0, 1, 2, . . .). (40)

So in this case, the spectrum of the position operator q̂ is discrete and given by (39). For |γ| = 1,
the orthogonality relation of Laguerre polynomials implies that the polynomials pn(x) satisfy a
continuous orthogonality relation:∫ +∞

−∞
w(x)pn(x)pm(x)dx = Γ(β)δmn, (41)

where
w(x) = e−x2 |x|2β−1. (42)

For |γ| < 1 the polynomials satisfy again a discrete orthogonality relation, deduced from the
one for Meixner polynomials.

For an interpretation as position wavefunction, it will be useful to normalize the corresponding
polynomials pn(x), in such a way that the normalized ones p̃n(x) satisfy

∑
x∈S1 p̃m(x)p̃n(x) = δmn

(or
∫
p̃m(x)p̃n(x)dx = δmn in case γ2 = 1), and then

ṽ(x) =
∞∑
n=0

p̃n(x) |β, n⟩. (43)

It will be convenient to write these coefficients as

ṽ(x) =

∞∑
n=0

Φ(β,γ)
n (x) |β, n⟩. (44)

Herein, x belongs to the spectrum of q̂, and in the notation of the coefficients (or overlaps)

Φ
(β,γ)
n (x) we have emphasized the dependence on the representation parameter β and the model

parameter γ.

The overlaps Φ
(β,γ)
n (x) have again an interpretation as position wavefunctions. In this

sl(2|1) model, some interesting phenomena occur. For γ2 > 1, these wavefunctions satisfy a
discrete orthogonality, and their plots consist of discrete “dots” at positions determined by the
support (39). Note that these dots get “closer” as γ gets closer to 1. When γ2 = 1, the support
becomes R, and we get continuous wavefunctions. Plots of these wavefunctions can be found
in Figures 1 and 2 of [9]. Note that the model parameter determines the type of the spectrum:
discrete or continuous; and when discrete γ also determines how close the dots of the spectrum
are to each other. The representation parameter β determines the shape of the wavefunctions:
for β = 1/2 the shape (whether discrete or continuous) is close to that of the wavefunction
of the canonical oscillator, for β > 1/2 the shape is close to that of the paraboson oscillator.

More precisely, for γ = 1 and arbitrary β > 0, the wavefunctions Φ
(β,1)
n (x) coincide with the

well known wavefunctions of the paraboson oscillator [9]. Since the canonical oscillator (boson
oscillator) is a special case of the paraboson oscillator (namely with β = 1/2), one finds

Φ(1/2,1)
n (x) =

1

2n/2π1/4
√
n!
e−x2/2Hn(x), (45)

with Hn(x) the common Hermite polynomial.
It should be mentioned that this relation to the paraboson oscillator (and hence to the

canonical oscillator) also follows from the underlying algebra. Indeed, sl(2|1) contains the
paraboson algebra osp(1|2) as a subalgebra, and the representations Πβ correspond to irreducible
representations of osp(1|2). In this context, the position operator for the paraboson oscillator
equals the expression (29) with γ = 1. This, by the way, explains why we have chosen – in the
sl(2|1) case – as position operator the most general self-adjoint odd element of the superalgebra.
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4. Concluding remarks
We have presented here two algebraic models for the quantum oscillator based on Lie
superalgebras. The first model comes from the Lie superalgebra sh(2|2), and is rather a toy
model. It is easy to analyze, and serves mainly as supporting example to tackle more complicated
models. For the sh(2|2) case, there is one model parameter γ which arises by allowing the
“most general” expression for a possible position operator. There is only one natural unitary
representation (the Fock space), so this makes the spectral analysis not too difficult.

The second model comes from the Lie superalgebra sl(2|1), and is more fundamental. For
the sl(2|1) case, there is again one model parameter γ by allowing the “most general” expression
for a possible position operator. But now there is a natural class of unitary representations,
each representation Πβ characterized by a positive real number β. The spectral analysis of
the position operator and its corresponding position wavefunctions is more subtle. The model
parameter γ plays an important role in the support of the position wavefunctions (which can be
discrete or continuous), and the representation parameter β plays a role in the “shape” of the
wavefunctions (closer to the canonical case or to the paraboson case). The sl(2|1) model includes,
as special cases (i.e. for special values of the parameters γ and β) the paraboson oscillator and
the canonical oscillator.

As a final remark, let us mention that the current examples are both sufficiently simple
to compute other relevant physical quantities, such as the action of [q̂, p̂], in the relevant
representations. We refer to [9, 8] for these computations.
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